利用粉煤灰制备多孔陶瓷砖的工艺研究

时间:2022-08-03 05:27:52

利用粉煤灰制备多孔陶瓷砖的工艺研究

摘要:本文介绍了以粉煤灰为成孔基础材料、普通粘土为集料,瓷粉为骨料,淀粉为造孔剂,加入少量粘结剂,调成含水率为34%的泥浆,采用传统注浆成型工艺成型坯体,并在1100℃下烧成显气孔率为37.68%,容重为1.41g/cm3的多孔陶瓷砖。经过XRD和SEM测试,得知该砖的主晶相为3CaO・Al2O3・2SiO2,其气孔大小在几十到上百微米。这一方法既实现了固体废物的资源化,又降低了陶瓷制备的能源消耗,同时制备工艺简单易行,具有良好的社会效益和经济效益。

Abstract: This paper introduces the preparation technology of porous ceramic tile whose obvious porosity is 37.68% and test weight is 1.41g/cm3. It takes the fly ash as the basic hole-forming material, the ordinary clay as the aggregate, the ceramic powder as aggregate, and the starch as the hole-forming agent, then it adds a small amount of binder to get the slurry whose moisture content is 34%, uses the traditional casting process to form the green body, and finally fires it at 1100℃. After XRD and SEM test, it found that the main phase of the brick is 3CaO・Al2O3・2SiO2, and its pore size is in the tens to hundreds of micrometers. This approach not only achieves the recycling of solid waste, but also reduces the energy consumption of ceramic preparation, its preparation process is simple and it has good social and economic benefits.

关键词: 粉煤灰;多孔陶瓷砖;注浆成型;气孔率

Key words: fly ash;porous ceramic tile;slip casting;porosity

中图分类号:TQ174 文献标识码:A 文章编号:1006-4311(2015)21-0133-02

0 引言

粉煤灰,是从煤燃烧后的烟气中收捕下来的细灰,其主要氧化物组成为:SiO2、Al2O3、Fe2O3、CaO、TiO2等,和高铝粘土相近。从物相上讲,粉煤灰是晶体矿物和非晶体矿物的混合物。其矿物组成的波动范围较大。一般晶体矿物为石英、莫来石、氧化铁、氧化镁、生石灰及无水石膏等,非晶体矿物为玻璃体、无定形碳和次生褐铁矿,其中玻璃体含量占50%以上[1]。粉煤灰是我国当前排量较大的工业废渣之一,随着电力工业的发展,燃煤电厂的粉煤灰排放量逐年增加。大量的粉煤灰不加处理,就会产生扬尘,污染大气;若排入水系会造成河流淤塞,而其中的有毒化学物质还会对人体和生物造成危害[2]。目前,粉煤灰已成为国际市场上引人注目的资源丰富、价格低廉,兴利除害的新兴建材原料和化工产品的原料,利用粉煤灰生产的产品在不断增加,既实现了固体废物的资源化,又降低了能源的消耗,是非常有意义的。同时,多孔陶瓷的出现也是适应了节省资源,保护环境的发展需求。多孔陶瓷是一种含有较多孔洞的无机非金属材料,并且是利用材料中孔洞的结构和(或)表面积,结合材料本身的材质,来达到所需要的热、电、磁、光等物理及化学性能,从而可用作过滤、分离、分散、渗透,隔热、换热,吸声、隔音,吸附、载体,反应、传感及生物等等用途的材料[3]。多孔陶瓷的发展始于19世纪70年代初,国内外很多研究组都报道了利用粉煤灰制备多孔陶瓷材料[4-7]。本文主要是利用粉煤灰为成孔基础材料、普通粘土为集料,瓷粉为骨料,淀粉为造孔剂,添加少量的粘结剂采用陶瓷传统制备工艺制成多孔陶瓷砖并通过SEM和XRD对其进行表征测试。

1 多孔陶瓷砖的实验制备过程

1.1 原料的选则及配料

表1给出了所用原料的化学组成。

根据文献和相关资料[3,8],并经过实验调整,最终确定配方为:普通粘土(56.25%)、粉煤灰(24.62%)、造孔剂(12.75%)、瓷粉(6.38%)的配方,加入少量粘结剂(石蜡)。配料完成后,加水球磨,制成含水率为34%的泥浆,并进行陈腐,待用。

1.2 注浆成型

用膏水比为5:4的石膏浆制作模具,待模具干后,便可成型。成型前,将泥浆过筛(100目)并搅拌10分钟,然后注浆,利用模具的吸水率,坯体成型。成型后,脱模并对坯体进行修整和干燥。

1.3 烧成

采用SX3_35_14快速升温电炉进行烧成。其升温速率和烧成温度如表2所示。

由表2可知,最高烧成温度在1100℃,属于陶质多孔材料,最终获得尺寸为120mm×95mm×20mm的多孔砖,并进行打磨。

2 多孔陶瓷砖的结构表征

2.1 晶相和形貌分析

图1为多孔陶瓷砖的XRD图谱,与标准卡片对比得知,该多孔砖的主晶相为具有钙长石结构的3CaO・Al2O3・2SiO2。图2给了按照配方三制备的多孔砖的形貌图。由图可知,该砖的气孔分布较均匀,大小在几十到上百个微米(由于利用SEM观察多孔陶瓷的形貌时可能会破坏一些孔结构因此会存在一些误差)。

2.2 气孔率和容重的测定

气孔率和容重是表征多孔陶瓷结构特性的重要参数,因为它们影响多孔陶瓷的各种性能指标。气孔率分为显气孔率、闭口气孔率和总气孔率。显气孔率又称开口气孔率,是指在试样中与大气相连通的孔隙体积与试样总体积之比,用百分率表示。取三块多孔砖的试样采用真空法测定其进行吸水率和显气孔率[9]。将试样放入干燥箱干燥至恒重;并将干燥试样在天平上准确称重m1;再将试样放入干净烧杯并置于真空干燥器中,抽真空至剩余压力小于10mm汞柱,保持10min;然后通过真空干燥器上口所装移漏斗放入蒸馏水,直到试样完全淹没,再抽气至试样上无气泡出时即可停止。称量饱和试样在水中的质量m3,最后迅速称量饱和试样在空气中的质量m2。

3 结论

3.1 多孔陶瓷砖的制备:以粉煤灰为成孔基础材料、普通粘土为集料,瓷粉为骨料,淀粉为造孔剂,加入少量粘结剂,调成含水率为34%的泥浆,采用传统注浆成型工艺成型坯体,并在1100℃下烧成,并进行XRD和SEM测试。

3.2 经过XRD和SEM测试,得知该砖的主晶相为具有钙长石结构的3CaO・Al2O3・2SiO2,其气孔大小在几十到上百微米。

3.3 采用真空法测得该多孔陶瓷砖的显气孔率为37.68%,容重为1.41g/cm3。

参考文献:

[1]曹文聪,杨树森主编.普通硅酸盐工艺学[M].武汉: 武汉理工大学出版社,1996(8):89.

[2]魏振枢,杨永杰主编.环境保护概论[M].北京:化学工业出版社,2007.7.

[3]罗明华编著.多孔陶瓷实用技术[M].北京:中国建材工业出版社,2006.3.

[4]吴建锋,王东斌,等.利用工业废渣制备艺术型清水砖的研究[J].武汉理工大学学报,2005,27(5):46-49.

[5]Shao Y F,Jia D C,Zhou Y,et a1.Novel method for fabrication of silicon nitride/silicon oxynitride composite ceramic foams using fly ash cenosphere as a pore-forming agent[J].J Am Ceram Soc,2008,91(11):3781.

[6]任祥军,张学斌,等.粉煤灰多孔陶瓷膜的制备研究[J]. 材料科学与工程学报,2006,24(4):484-488.

[7]苗庆东,张召述,夏举佩.粉煤灰制备低温陶瓷泡沫材料[J].硅酸盐通报,2010,29(6):1463-1467.

[8]章秦娟主编.陶瓷工艺学[M].武汉:武汉理工大学出版社,1997,3.

[9]曾令可等编著.多孔功能陶瓷制备与应用[M].北京:化学工业出版社,2006,7.

上一篇:遮阳系数对供暖与空调能耗的影响差异分析 下一篇:过度教育影响下大学生就业难的问题研究