继电保护中电力光纤技术应用及工作原理解析

时间:2022-08-01 11:28:15

继电保护中电力光纤技术应用及工作原理解析

摘 要:基于继电保护中电力光纤技术的应用问题,文章通过对电力光纤技术应用要求、光缆的电网保护以及解决传输通道双重化的问题进行了阐述。并结合实际情况,分析了有光时分复用电力光线技术的工作原理。

关键词:继电保护;电力光线技术;电网通信;有光时分复用

电力系统运行安全是保障社会经济建设稳定的重要工作内容,随着电网建设规模的不断扩大,采用原有的数据信息传递方式很难满足信息高效传递以及高信息容量的需求。针对这一问题,相关研究人员应从明确电力光纤技术应用要求、光缆的电网继电保护以及解决传输通道双重化问题入手进行分析研究,其目的是为相关建设者提供一些理论依据。

1 继电保护中电力光纤技术概述

电力光纤技术是指,应用于电网通信和调度过程的技术,它能够为信息通道提供相应的保护。而继电保护中应用的电力光纤技术是通信光纤,它是由包层和纤芯两部分内容组成。包层是将光控制在纤芯内,并通过保护纤芯来增加光纤的机械强度;纤芯则是用来传输光信号的介质。电力光纤在继电保护过程中能够起到通道传输介质的作用,它的应用使得电力系统的运行具有耐高压和抗雷电电磁干扰的特点。对于继电保护电场的绝缘效果来说,电力光纤技术的应用带来了频带比较宽、传输容量比相对较大以及衰耗比较低的特点。基于上述优点,电力光线网络系统的建设力度不断加大,光纤技术也会在继电保护中完善其保护措施。

2 继电保护中电力光纤技术的应用

2.1 电力光纤技术应用要求

电网继电保护的安全运行是依靠继电保护的应用动作和应用时间来保证的。因而,必须要对电网通信通道的延时传输进行严格。相关研究结果表明,基于SDH光纤通信系统能够实现在480km的距离范围内满足电网继电保护的传输延时需求[1]。当电网实际的传输需求大于480km时,电力光纤技术通过增大中继的距离或者提高输出光功率的方法来满足光信息传输的延时要求。目前,随着电力光纤技术的快速发展,光信号的接收机、光源以及光纤的使用性能都得到了不同程度的提升。具体来说,光信号接收机的接收机的灵敏度更高、光源的输出功率更大以及光纤的无中继传输距离更长,部分光纤的无中继传输距离甚至可以达到上百公里。这一要求的满足是电力光纤技术改善了光信号的放大器以及色散补偿器的原因。在具体计算时,各个数据参数是以传输最差状态来进行计算的,这就意味着结果是存在一定余量的。如果再去掉一些传输过程中不必要延时环节,那么电力光纤技术允许延时的时间距离还可以延长。由此可以看出,SDH的光纤通信系统完全可以满足电力系统传输继电保护信号的延时要求和避免传输损伤问题的发生。在这种情况下,电网的继电保护实现了信号的有效传输。电力光纤技术还能够提高电网信息设计、运行以及系统维护的工作效率,保证了电力通信系统传送的安全性。

2.2 光缆的电网保护

现阶段,继电保护中电力光纤网络的使用光缆有三种:分别是架空地线复合(OPGW)光缆、自承式(ADSS)光缆以及普通非金属光缆。其中虽然架空地线复合光缆OPGW的使用成本较高,但它在同杆双回和多回线路以及高电压等级的使用过程育线路的综合造价相比成本较低。与此同时,架空地线复合光缆还可以兼作继电保护的通道。例如,220kV的电网通信线路,其采用的高频保护和光纤保护的成本价格相当。但当高频保护在线路两侧的运行过程中,还需要增设结合滤波器、阻波器以及耦合电容器等设备,这就意味着OPGW光缆的使用将更为经济实用。此外,架空地线复合光缆的应用还具有较高的运行可靠性,且设备维修费用低廉的特点。

2.3 传输通道的双重化问题

在继电保护中,当电力光纤技术应用于220kV电网以及220kV以上的电网信号传输时,要按照规定进行双重化的主保护。除此之外,纵联保护也要实现线路的双重化保护。对于220kV电网以及220kV以上电网信号传输的高频保护会在不同的相别上进行耦合,所以就能够满足传输通道的双重化要求。在实际传输过程中,如果采用两套光纤保护进行电网信号线路的主保护,那么传输通道的双重化问题就会对光纤保护的普及造成影响。因而,要在同一光缆的不同纤芯上实现通道双重化要根据光缆的使用型号来进行确定。对于光缆型号的选择,相关研究表明,按照使用可靠性原则ADSS光缆而后普通不能实现不同纤芯的双重化[2]。基于此,只能通过光缆的双重化传输标准来达到通道双重化的目的。

2.4 应用施工工艺

电力光纤技术在继电保护中的对象是,超高压线路的传输通道运行安全,这是保证电力系统稳定运行的关键。电力光线技术的光缆在传输数据信息式,需要经过光缆机、转接端子箱、高压线路以及电缆层等环节,这就给光纤的施工质量和施工工艺操作提出了新的要求。基于此,施工人员应在继电保护装置在投入使用前减小其测试误差。否则,就会导致电力系统继电保护装置的错误动作,从而对电力网络的安全运行产生影响。

3 继电保护中电力光纤技术的工作原理

3.1 电力光纤技术的应用原理

在电力光纤技术应用于继电保护的过程中,光线网络起到了稳定传输性能、提高保护恢复能力的作用。现阶段,电网通信系统中广泛采用的是SDH/SONET同步数字体系。同步数字体系的工作原理是以电时分复用的方式来进行继电保护的,它的应用使得电网通信系统具有固定的时延性能和强大的保护恢复能力。但在具体的应用过程中存在一定的局限性,这就很难满足电力网络系统进行组网的需求。基于此,应把当前系统广泛采用的电复用方式逐渐向光复用方式进行转化,这是因为光复用保护方式能够实现增大光纤传输信息容量的目的。光复用方式也可以称为有光时分复用,其中主要有两种保护方式,分别是频分复用技术和波分复用技术。

3.2 波分复用技术

对于波分复用技术(WDM)在继电保护中的应用,已经进入到商用的大规模使用阶段。其具体的工作原理与电时分复用技术的扩容潜力低下情况不同,WDM技术是通过一根光纤来传送多个波长的方式来进行数据信息传输[3]。此过程中,WDM技术使发送的多个波长有效绕过了光源信号,这就起到了增加电力光纤的传输容量,从而解决了当前商用信息爆炸的波长传输需求。此外,WDM技术还将电力光纤的带宽资源利用了起来,这就使光信号的传输容量实现了几百倍的提升。而光信号以大容量的方式进行长途运输,在一定程度上节约了光纤设备和再生器的使用,有效地降低了电网继电保护的运行成本。

4 结束语

综上所述,电力系统的继电保护是为电力系统提供安全、可靠以及高效的运行方式的技术,将电力光纤应用于其中,能够实现其经济运行的同时,还保证了电网通信的运行可靠性。具体来说,在继电保护中电力光线技术的应用将电复用技术逐渐转化为了光复用技术。该技术完成了电力设备的运行过程监测、数据信息采集以及传输方式控制等任务,同时还实现了电网传输通道中接收数据信息的快速完整传递。在此应用过程中,如果出现了故障,继电保护就可以快速做出反应动作,从而避免电力系统瘫痪事故的出现。

参考文献

[1]石慧文.电力继电保护与光纤技术[J].内蒙古石油化工,2011,5:104-106.

[2]曾志强.继电保护中光纤通信技术应用[J].通讯世界,2014,19:8-9.

[3]李忠任,马超,李景良.浅谈光纤在电力系统继电保护工作中的应用前景[J].电子制作,2013,23:242.

上一篇:浅析高速公路基层施工中的离析现象 下一篇:给生命注入光