图像分割与医学高校生创新能力锻炼

时间:2022-07-02 10:08:41

图像分割与医学高校生创新能力锻炼

创新是一切学术研究的本质和生命力之所在,也是创造学术精品的基本途径[1]。我国于2006年提出了建设创新型国家的发展目标,创新型国家离不开创新型人才,在国家制定的中长期(2006-2020)科技发展规划中明确提出,要充分发挥教育在创新人才培养中的重要作用,构建有利于创新人才成长的文化环境,加快培养一批高层次创新人才。近几年,我国教育界、科技界和社会学界都在全方位探讨、预测新世纪的社会发展趋势,以期使各领域能以较准确的行为目标进入新的发展时期,从而满足社会的需要或引导社会的发展方向。在诸多领域中,最为迫切的是教育界,因为在我国国民经济发展过程中,人才是第一位的,只有培养了符合社会发展需求的创新型人才,才能保证我国各行业的发展稳步前进,并进而建设创新型国家[2]。

医学工程由于其学科的高度综合交叉性,对学生创新能力的培养相对其它学科更为重要,也更具有探索性。关于医学工程学生创新能力培养的论文已有很多[3-6],他们都从不同的角度阐述了医学工程学生创新能力培养的途径、方法与模式。具体从某一学术领域研究对医学工程创新能力培养的文章还鲜见于文献,本文尝试从图像分割领域入手,首先概述图像分割的概念和基本算法,接着阐述图像分割在医学工程领域中的重要作用,最后结合实际应用重点研讨医学工程学生的创新能力培养。

1图像分割及其基本算法

图像分割是一种重要的图像分析技术。在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣,这些部分常称为目标或前景,而其他部分称为背景,前景一般对应图像定的、具有独特性质的区域。为了辨识和分析图像中的目标,需要将它们从图像中分离提取出来,在此基础上才有可能进一步对目标进行测量和对图像进行处理。简而言之,图像分割就是指根据某种均匀性或一致性的原则将图像分成若干个有意义的部分,使得每一部分都符合某种一致性的要求,而任意两个相邻部分的合并都会破坏这种一致性。图像的分割在很多情况下可以归结为图像像素点的分类问题[7]。目前应用较多的图像分割方法主要有两种:基于区域的图像分割方法和基于边缘检测的图像分割方法。前者通过检测同一区域内的均匀性是否一致来将图像中的不同区域识别出来,主要包括阈值分割法、区域生长法、聚类分割法以及基于随机场的方法等。基于边缘检测的分割法是通过边缘检测技术把不同区域分割开来,常用的方法包括微分算子法、形态学梯度法、曲面拟合法、边界曲线拟合法,以及串行边界查找等[8]。这些分割方法都有自己的优点和缺点,以及不同的应用范围。经过对这些算法的改进以及重新组合,也有人提出了新的算法,尽管这些新的算法对一些图像的分割能够取得好的效果。但对于背景复杂的弱边界医学图像分割效果不佳。近十年以来,针对传统图像分割方法的局限性,研究重点逐渐放在基于偏微分方程、借助曲线演化模型等数学建模方法的图像分割,其中最具有代表性的就是水平集方法和活动轮廓模型[9]。尽管这类方法的分割效果与参数的选择有关,但具有一定的规律,且只要参数选择合理,对于边界模糊、对比度低的医学图像分割,亦可达到理想的分割效果[10]。

2图像分割在医学工程中的重要作用

随着医学成像在临床诊断和治疗上的作用越来越显著,医学图像分割就成为医学图像分析领域的一个重要的研究课题。由于手工分割很耗时,且主观性强,因此,寻求在计算机的帮助下,从CT、MRI、PET以及其它模式医学图像中提取有关解剖结构的有用诊断信息成了我们的任务。尽管现代成像设备提供了对内部解剖结构的优越的观察条件,使用计算机技术对内部解剖结构进行精确而有效的量化和分析仍然是有限的。医学图像分割可以提取出准确的、可重复的、量化的病理生理数据,满足不同的生物医学研究和临床应用的需要。医学图像分割的目的是通过提取描述对象的特征,把感兴趣对象从周围环境中分离出来,分析和计算分割对象的解剖、病理、生理、物理等方面的信息。图像分割过程是对医学图像进行对象提取、三维重建、体积显示、图像配准、临床诊断、病理分析、手术计划、治疗方案、疗效评估、影像信息处理、计算机辅助诊断等处理的一个必不可少的步骤。医学临床实践和研究经常需要对人体某种组织和器官的形状、边界、截面面积以及体积进行测量,从而得出该组织病理或功能方面的重要信息。精确的测量对疾病的诊断和治疗有重要的临床意义。在一段时间内多次测量同一种与某种疾病相关的组织的体积,可以得到病情发展的信息或用作治疗效果的监测手段[9]。如肿瘤学的临床研究经常用肿瘤收缩的程度和时间来评估治疗效果,将肿瘤大小的精确量化数值作为疗效的测度;肝脏移植供体与受体的肝脏体积测量与脉管分析是肝脏移植术前最重要的预评估工作;视网膜血管的形状、宽度、扭曲以及分叉等结构特征的变化可以直接反映各种眼科疾病对血管网络形态结构的影响,这些特征的变化对某些眼底疾病的早期诊断有重要的意义[11]等等,这些都与图像分割及其准确程度密切相关。此外,不同模式医学图像间的配准、血液细胞的识别和分类、血管造影图像中冠状动脉边缘的监测、乳腺片中微钙化点的检测、放化治疗、神经外科手术的计划与图像引导的手术等也都要求对组织成分的位置和大小精确定位和计算。对人体各种组织的正确分类不仅可以为临床组织病变提供计算机辅助诊断依据,而且也是图像三维重建和医学图像可视化的基础。由于人体解剖的个体差异较大,临床应用对医学图像分割的准确度和分类算法的速度要求又较高,目前虽然已有多种分割算法,但是远未达到完善。因此,医学图像分割领域的研究仍然是当前医学图像处理和分析的热点。

3图像分割与医学工程学生创新能力培养

图像分割实践是培养医学工程学生创新能力非常有效的途径。首先,由于医学图像实际获取设备与条件的不同,引起测量上的不精确性和不确定性,造成医学图像数据非常复杂,这给医学图像分割带来了极大的挑战。其次,图像分割方法灵活多样,能否熟练地、有针对性地应用这些方法解决医学图像分割领域的具体问题,是检查学生创新能力的非常有效的办法。第三,图像分割要求学生具有扎实的数学基础,熟练的编程能力以及知识的综合应用能力。现在的医学成像设备,如CT、MRT成像设备,它们自带的分割软件一般使用阈值分割的方法,尽管这些设备尤其是国外设备使用阈值分割的精度很高,但因阈值分割只是简单地根据图像的灰度值进行分类,因此,这一方法对于具有复杂背景、形状不规则的医学图像分割来说,具有自身的缺点。如对于肝脏CT图像的分割与三维重建,由于肝脏与周围器官的弱边界问题,单独应用阈值分割是很难解决问题的,因此,我们就要激发学生的创新思维,从模糊聚类、区域增长、数学形态学、水平集方法等角度加以思考。尽管如此,自动地分割某一个人的肝脏CT序列图像,也会遇到困难,这是因为(1)肝脏相邻器官或组织如腔静脉、肌肉等的灰度值与肝脏很相近;(2)由于造影剂影响、CT设备不同模态的设定对不同供体的肝脏和其它组织呈现出不同的灰度值,甚至同一供体不同切片都会如此;(3)CT图像不同切片的解剖结构不同,不同供体的肝脏形状差异显著,甚至会出现两三个分散的肝脏区域出现在同一个切片中;(4)肝脏形状是不规则的,它们延伸至腹部左侧与脾脏相连,由于这两个器官的灰度值范围几乎相同,即便人眼观察,也无法确定二者边界,因此,由于检测不到脾脏和肝脏的边界,一般算法无法完成分割。因此,我们可以启发学生应用神经网络的智能分割方法,根据上一切片的分割结果自动分割同一序列的下一切片图像,这样又会涉及到如何将肝脏的灰度信息、分块信息,以及相邻切片间的空间信息融合到一起,也就是说,如何构造神经网络的特征向量[12]。在肝脏分割的过程中,还会涉及到肋脊椎骨与肾脏的分割,这些器官如果单纯根据图像分割的方法是很难解决问题的,必须借助于医学解剖学知识,如对称性、连续性等[13、14]。再如,对于医生非常感兴趣的肝静脉与肝门静脉的分割与三维重建,由于注射造影剂后它们的灰度与周围的的肝脏区别明显,因此,采用阈值分割的方法就很容易得到所需的结果,但由于这两种血管灰度一致,因此,使用医院CT设备自带的软件三维重建后,它们是交织在一起的,这就不便于医生观察,甚至会发生混淆,这个时候就要启迪学生的医学知识应用能力,结合解剖学知识并应用图像分割方法解决这个问题。另外,通过对肝脏图像的分割,学生还可以进一步将这些知识和理论应用到非医学图像领域的分割。如结合单阈值分割,可以引导学生进行多阈值分割,并提出改进的方法[15];结合CV模型与LBF模型,可以引导学生通过高斯核函数改进CV模型图像拟合函数,得到加权形式的能检测局部区域灰度不均匀的函数;并针对当CV模型在低对比度图像中检测不同灰度目标时出现的误分割情况,提出一项全局约束函数,用于调控曲线在运动中兼顾检测梯度幅值不为零的点,并将改善的方法用于复杂的纹理图像分割[16]。

综上所述,对于学生的创新能力培养,我们如果能结合实际应用就能挖掘学生的潜能,开阔学生的视野,激发学生的学习热情,还可以提高学生理论与实践相结合的能力。在以上肝脏CT图像的分割例子中,可以看出,学生不仅需要一定的医学知识与医学影像基础,还需要一定的图像处理理论与智能模式识别理论,如模糊聚类、水平集方法、区域增长、数学形态学[17]、神经网络等,而且,更重要的是,通过肝脏分割这一简单的课题可以引申出一系列相关的课题,这些课题不仅具有内在的联系,也是相对独立的,而且层层深入,要求学生不仅要知识全面,尤其要能灵活运用,融会贯通。这对于学生的创新能力培养具有极大的价值,我们课题组的学生也通过这条途径,结合部级、省级与校级的创新课题,学到了很多书本上学不到的知识,包括他们的团队协作能力和科研能力的提高,还发表了相应的学术论文[10,12-17]。

再比如,对于视网膜血管图像的分割,现在的文献中已有很多方法,包括传统的Gabor小波方法,匹配滤波(MatchedFilter,MF)方法以及它的改进算法,基于知识引导的自适应阈值分割方法等等,尽管这些方法都比较新颖,也能取得较好的分割结果,但都对视网膜中微小血管的分割无能为力。如果能够引导学生先对图像进行直方图增强,再经过二维Gabor小波的平滑处理,学生就会发现被“隐藏”的微小血管得到了呈现。由于水平集方法对较粗血管分割的优势,以及区域增长方法对微小血管分割的优势,学生自然就会找到最终的分割方法。尽管方法比较传统,但效果比其他方法都好,这样不仅加深了学生对以上各种图像分割算法的进一步认识,更大大激发了学生的科研热情,提高了学生的创新能力。还有,图像分割往往离不开对分割结果的比较与评价,高水平学术论文中,分割结果的比较与评价往往是一件很重要的事情,也是一件比较困难的事情,并且一般占了大量的篇幅,因此,在图像分割的学习与实践中,有意识地培养学生这方面的能力,也是值得重视的。这不仅要求学生有一定的图像分割知识积累,敏锐的思维,扎实的数学基础,娴熟的编程能力,更要有图像分割结果评估这方面的意识,而且这往往是我们中国学生最容易忽视的,他们往往认为只要分割结果出来就完成任务而不去关注。

譬如,上面所提及的视网膜血管分割,因为已有的方法和我们改进的方法相比,往往相差无几,甚至肉眼难以观察,如果不加以定量比较,往往很难体现算法的优势,或者没有足够的说服力,因此,这也是学生创新能力培养的一个重要领域,我们应该加以高度重视。值得一提的是,现在很多学生看了国际期刊上发表的医学图像分割领域的高水平论文之后,一般只关注它的算法和结果,甚至感慨论文水平并不怎么样,为什么别人能发表,而自己却不能发表。熟不知,别人论文的组织水平,知识体系的全面性,展开讨论与结果评价的深入性往往比我们高出一筹。因此,对学生创新能力的培养应该是全方位的、多领域的,不仅要有意识地引导学生深入思考,也要注重对国内外优秀成果与经验的吸收借鉴。

4结论

学生创新能力的培养是时代赋予高校的历史使命。本文首先介绍了图像分割的基本概念与方法,接着分析了图像分割在医学工程中的重要作用,最后结合肝脏CT图像的分割以及视网膜血管图像的分割,由浅入深地对医学工程学生创新能力的培养进行了重点阐述,并针对学生对分割质量评价不够重视的现象,提出了全方位、多领域培养学生创新能力的必要性。

上一篇:环境风险的司法预防研究 下一篇:环保公正执法与司法中存在障碍与措施