白点状视网膜变性的研究进展

时间:2022-06-26 12:54:33

白点状视网膜变性的研究进展

[【摘要】 白点状视网膜变性是一种常染色体遗传的进行性视网膜变性疾病。多在幼年时期发病。主要表现为特征性的眼底白点状改变,夜盲症和视野缩小。白点状视网膜变性具有遗传异质性,目前已证实与RHO基因、RLBP1基因、RDS基因的异常有关。其发病机制尚未十分明确。本文就白点状视网膜变性的研究进展综述如下。

【关键词】 白点状视网膜变性 夜盲 基因 遗传学

白点状视网膜变性(retinitis punctata albescens,RPA)又称白点状视网膜炎,是一种以眼底圆形或卵圆形的黄白色点状视网膜改变为主要特征的常染色体隐性遗传性疾病,同时伴有进行性夜盲和视野缩小[1]。该病由Mooren[2]在1882年首先提出,用以描述眼底以大量白点分布为主要特征的病变。在1910年Lauber[2]将这一病变分为稳定性和进行性两种,将稳定性的命名为“眼底白点症”,而进行性的则使用“白点状视网膜变性”这一名称并长期沿用。该病发病率较低,具有家族遗传性,也有散发病例的存在。患者多在幼年时发病,双眼对称病变,可伴有视网膜色素变性(pigmentary degeneration of retinitis,RP),即同时一患者两眼分别患这两种眼病或在同一患眼中兼有这两种变性。随着病情的进展,患眼视野缓慢的向心性缩窄,视觉电生理检测视网膜电图a、b波的振幅降低或熄灭。眼电图波形等视网膜功能受损的表现[3-4]。

一 病因及发病机制

RPA的病因和发病机制尚未十分明确。通常为常染色体隐性遗传,但也有常染色体显性遗传的报道[5]。父母多有近亲联姻史,并可与RP见于同一家族,或同一患者一眼为RP,另一眼为白点状视网膜变性,甚至同一眼底兼并有两种特征醒的改变。推测与临床异质性有关。在该病的发生发展中,炎症、中毒、血管等病变的影响也尚未排除。

二临床表现

RPA的特征性临床表现为:(1)视力:患者多在幼年发病,常主诉为夜盲,中心视力一般在早期无明显损害,在病程晚期可有下降。(2)色觉障碍和视敏度下降。(3)视野缺损:随着病情的进展,视野里向心性的缩窄,于暗光下更为明显,直至晚期患眼视野缩窄可成管状。(4)眼底改变:眼视网膜有广泛散布的黄白色小圆形或卵圆形点,白点的大小比较一致,形状和边界比较规整,分布密集且均匀。白点可位于视网膜血管的浅面、深面或同一平面;分布区域主要在后极部和赤道部,黄斑区多不受侵犯,周边部分布渐稀疏。至病程晚期,视网膜可杂有不规整的黑色素变性外观,视颜色变淡,视网膜血管变细[6-7]。

辅助检查:(1)光学相干断层扫描(OCT):黄斑区视网膜,尤其是视网膜外核层弥漫性变薄,光感受器细胞层的分界线模糊不清,表明变性改变主要表现在视网膜外层即色素上皮层,而神经纤维层的厚度正常[8]。(2)眼底荧光血管造影:可见双眼视边界清楚,眼底暴露脉络膜大血管,眼底遍在的斑点处的弥漫性透见荧光以及斑块状的脉络膜毛细血管的无灌注区,黄斑中心凹未被累及,黄斑中心凹周围荧光增强,后期可因无灌注周围毛细血管渗漏至其中而形成斑片状渗漏荧光区,黄斑周围有荧光积存[9]。(3)暗适应检查及电生理:即使延长暗适应时间,也不能达到正常的视杆阈值,视网膜电图a、b波的振幅降低或熄灭,眼电图波形平坦等视网膜功能损害的表现。另外,国内也有报道RPA超声检查也有特征性的改变:视网膜厚,呈不均匀中强回声,表面可见弥漫点絮状强回声,随眼球转动轻微飘动,呈“芦絮状”改变等[9]。

三 分子遗传学研究

RPA基因水平的研究开始于20世纪。目前已经证实RPA的发病与视黄醛结合蛋白(retinaldehyde-binding protein 1,RLBP1)基因、视紫红质(rhodospsin,RHO)基因、盘膜边缘蛋白/RDS基因等的突变有关。RPA具有遗传异质性和临床异质性,其分子遗传学机制较复杂。已经确定的相关致病基因的单基因定位于6p21.1-cen。

(一)RLBP1基因突变所致的RPA

RLBP1基因编码的蛋白质为细胞视黄醛结合蛋白,该蛋白是一种分子量为36KDa的水溶性蛋白质,主要在视网膜色素上皮细胞和Müller细胞中高表达,在视网膜感光细胞中未见表达,其功能是携带11-顺-视黄醛作为生理性配体,并参与全反式视黄醛到11-顺-视黄醛的异构反应,对视黄醛的代谢和色素的再生起重要作用[10]。1992年Sparkes等应用体细胞杂交和原位杂交技术将该基因定位于15q26,1994年Intres等[11] 克隆了RLBP1基因。RLBP1基因DNA长度为11724bp,含8个外显子,第一个外显子完全不转录,第2~8个外显子含有非转录区,mRNA长度为1651bp,编码317个氨基酸的蛋白质。到目前为止,已经证实有11种RLBP1基因突变与RPA的发病相关,其中有7种错义突变,即Arg234Trp、Arg150Gln、Arg151Trp 、Ile200Thr、Gly145Asp、Arg103Trp、和Met225Lys;2种框移突变,即Gly31缺失(GGAG-)和第八外显子的一个碱基缺失;2种剪接位点的改变,即第三外显子末碱基的GA的转换和第三内含子的第二碱基的TC的转换。

Marie等[12]报道Bothnia营养不良与RLBP1基因突变有关。Bothnia营养不良是一种地方限制性疾病,主要发生在瑞典北部。患者主要表现为幼年时期夜盲、眼底特征性的白点状改变以及黄斑区的变性。目前认为该病属白点状视网膜变性的一种。Marie等将来自于七个家族的20例患者进行了编码RLBP1的基因进行直接测序。将相关基因定位于15q26,并且发现所有患者的同一基因的第7外显子都有纯合的C T的转换,导致Arg234Trp错义突变。目前还没有证实该氨基酸的作用,但据家族中其余成员相关蛋白的高度保守性推测,该突变对蛋白质的功能有重要的影响。Erica等[13] 在另一种早发的视网膜营养不良疾病,即纽芬兰杆-锥细胞营养不良患者基因中发现两个剪接位点的突变。该病是白点状视网膜变性的一种。经基因测序发现在该患者中有第三外显子末碱基的GA的转换和第三内含子的第二碱基的TC的转换这两种剪接位点的突变,剪接位点的改变导致编码的蛋白质发生改变,从而影响其生理功能而致病。2001年,Katsanis等[14] 的研究表明,RLBP1基因的Arg150Gln杂合突变在洛泊氏病患者中存在。在30岁以前,患者无视网膜色素变性和RPA的表现,而在40~50岁时,则逐渐表现出与RPA一致的病变。从而推测该基因突变可能导致缓慢进行性RPA。2004年,Gerald等[15]在对来自于3个家族的5例患者进行基因测定发现一例患者的RLBP1基因上有Arg151Trp和Gly31缺失(GGAG-),基因分离分析该突变是同一等位基因的复合杂合突变。RLBP1的新的突变的证实更进一步说明了RPA的遗传异质性。同年,Yesim 等[16]在一例RPA患者中发现新的RLBP1的复合杂合突变:Gly145Asp(外显子5,GGTGAT)和Ile200Thr(外显子6,ATTACT)。该突变在在人、牛、鼠等相同区域都高度保守,表明这些突变会对蛋白质功能有重要影响。推测这些在蛋白质C-端区域非保守的改变扰乱了蛋白质的正常功能。 2005年,Makoto等[8]报道了一例日本的RPA患者Arg103Trp和Arg234Trp的杂合突变,其父亲和同胞姐妹是Arg103Trp杂合突变的携带者,其母亲是Arg234Trp杂合突变的携带者,该突变在100例对照组中的等位基因中未发现。其中Arg234Trp是Bothnia营养不良型RPA的致病基因。

(二)RHO基因突变与RPA

RHO基因是最早发现的RP致病基因,位于人染色体3q21-24,含有4个内含子5个外显子[17],基因全长6706bp。外显子编码含有348个氨基酸残基的视紫红质。该蛋白由11-顺视黄醛和视蛋白组成,其结构高度保守,含有1个七跨膜的核心结构域、3个胞内结构域和3个胞外结构域。 视紫红质只在视杆细胞中专一表达,是一种高度特异性的G蛋白耦连受体,跨过细胞双分子脂质层,传导各种细胞外信号,属于光感受器视觉光电转导系统中的受体,可激发光级联反应,放大刺激信号并引起感光细胞超级化和突触释放神经递质[18-21]。从1990年Dryja首次发现RHO基因存在基因突变以来,到目前已发现100多种RHO基因突变,其中90%以上是单个碱基置换的点突变,少数是微小缺失或插入突变,目前已知Arg234Trp错义突变与RPA相关[22]。Eric等在1995年在对RPA患者的视紫红质基因突变进行筛查时发现在一家患者中都又Arg135Trp突变,初步说明了该基因突变与RPA发病相关。关于RHO突变引起RPA的机理还不清楚,推测与以下因素有关:蛋白质的结构和构象的改变而影响视紫红质蛋白向杆体外节盘膜的运输、突变的视紫红质蛋白不能正常折叠而不能整合到盘膜导致盘膜的不稳定性,或者是蛋白C端的突变影响到其与动力蛋白的结合。

(三)盘膜边缘蛋白/RDS基因

盘膜边缘蛋白(Peripherin)是存在于脊椎动物光感受器细胞外节磨盘边缘区的一种膜结合蛋白[23],由346个氨基酸残基组成,有四个可能的跨膜区段,其相对分子量约39×103。在正常的视杆细胞外节中先通过其肽链间的二硫键形成同源二聚体,再与另一种叫作杆体外节盘膜蛋白(ROM1)的同源二聚体以非共价键连接形成盘膜蛋白四聚体。盘膜边缘蛋白和ROM1对外节盘膜正常形态结构的产生与维持起重要作用。盘膜边缘蛋白由视网膜变性慢基因(retinal degeneration slow,RDS)编码,故又称为RDS基因。盘膜边缘蛋白/RDS基因位于6p21.2-cen,含有2个内含子和3个外显子。已经发现多个基因突变与RPA的发生有关。1993年Kajiware等[24]发现一例59岁的男性RPA患者有RDS基因的框架移位,其25密码子的前2个碱基缺失,导致54密码子下游碱基终止,其蛋白产物只有42个氨基酸残基,而正常的蛋白产物有346个氨基酸残基。该基因突变导致编码的蛋白受损部位在蛋白的跨膜段,可能影响蛋白质的构象和功能。Hoyng等[25]发现该基因142密码子的突变与RPA有关,可推测该基因的突变与RPA的表型有基因异质性。后来,Barkur等[25]在一个家族性的RPA的基因与表型的试验中发现RDS基因的一种错义突变(Gly338Asp)和两种沉默突变(106Val和121Leu)。这些突变分别位于外显子3和外显子1上。而在正常对照组中未见该基因突变的发生。RDS基因突变的一个重要特点就是临床异质性,而RPA初步研究证明其基因异质性的特点,故在RPA与RDS基因突变的关系上的研究显得复杂,该疾病的发生发展还与环境因素等相关。

还有人推测RPA与载脂蛋白E基因、ROM1基因、RDH5基因、RDH8基因、RBP3基因等有关。总之,目前已经确定的可导致RPA的基因突变有以上三种,由于异质性使RPA的分子遗传学机制显得尤为复杂。RPA目前尚无有效的治疗方法。对其病因和发病机制的了解,有助于该病的诊断和治疗。

参考文献

〔1〕 Paul J,Botelho MD,Kevin J,et al.Familial occurrence of retinitis punctata albescens and congenital sensorineural deafness[J].American journal of ophthalmology.1999,2:246-247.

〔2〕 Myles Standish MD. Retinitis Punctata Albescens[J]. Trans Am Ophthalmol Soc. 1893,6:534-7.

〔3〕 Marmor MF.Dyslrophies of the retinal pigment epithelium.In:Ziun KM,Marmor MF,eds. The retinal pigment epithelium[M].Harvard University Press.1979,424-453.

〔4〕 Cart RE.Abnormalities of cone and rod function.In:Ryan SJ,ed. Retina[M] voi I.2nd ed. St Louis:Mosby.1994,502-511.

〔5〕 Kajiwara K,Sandberg MA,Berson EL,et al.A null mutation in the human peripherin/RDS gene in a family with autosomal dominant retinitis punctata albescens[J].Nature Genet.1993,3:208-212.

〔6〕 Ellis D.S,Heckenlively J.R.Retina .1983,3:27-31.

〔7〕 李凤鸣主编.中华眼科学[M].北京:人民卫生出版社,2005:2122-2131.

〔8〕 Makoto Nakamura MD,Jian Lin MD,Yasuki Ito MD,et al.Novel mutation in RLBP1 gene in a Japanese patient with retinitis punctata albescens[J].American journal of ophthalmology.2005,139:1133-1135.

〔9〕 王淑荣,赵霞.超声诊断白点状视网膜炎1例[J].中国超声医学杂志.2000,16(3):425.

〔10〕 Saari JC et al[J].Neuron.2001,29(3):739-748.

〔11〕 Intres et al[J].Biol Chem.1994,17:198-200.

〔12〕 Marie SI,Burstedt,Ola Sandgren,et al.Bothnia dystrophy caused by mutations in the cellular retinaldehyde-binding protein gene(RLBP1) on chromosome 15q26[J].Invest Ophthalmol Vis Sci.1999,40:995-1000.

〔13〕 Erica R,Eichers,Jane S,et al.Newfoundland rod-cone dystrophy,an early-onset retinal dystrophy,is caused by splice-junction mutation in RLBP1[J].Am.J.Hum.Genet.2002,70:955-964.

〔14〕 Katsanis N,Shrover NF,Lewis RA,et al.Fudus albipunctatus and retinitis punctata albescens in a pedigree with an R150Q mutation in RLBP1[J].Clin Genet.2001,59:424-429.

〔15〕 Gerald A,Fishman MD,et al.Novel mutations in the celluar retinaldehyde-binding protein gene(RLBP1)associated with retinitis punctata albscens[J].Arch Ophthalmol.2004,122:70-75.

〔16〕 F.Yesim K,Demirci MD,Brian W,et al.A novel compound heterozygous mutation in the cellular retinaldehyde-binding protein gene (RLBP1) in a patient with retinitis punctata albescens[J].Am J Ophthalmol.2004,138:171-173.

〔17〕 Nathans J,Hogness DS.Proe Natl Acad Sci USA.1984,81:4581.

〔18〕 Menon ST,Han M,Sahmar TP.Rhodopsin:structural basis of molecular physiology[J].Physiol Rev.2001,81(4):1659-1688。

〔19〕 Kisselev OG,Downs MA.Rhodopsin controls a conformational switch on the transducin gamma subunit[J].Structure (Camb),2003,11(4):367-373.

〔20〕 Liang Y,Fotiodis D,Filipek S,et anization of the g protein-coupled receptors rhodopsin and opsin in native menbrances[J],J Biol Chem.2003,278(24):21655-21662.

〔21〕 Yeagle PL,Albert AD.A conformational vigger for vctivation of a G protein by a G protein-coupled receptor[J].Biochemistry.2003,42(6):1365-1368.

〔22〕 Eric Souied MD,Gisele PHD,et al.Retinitis punctata albscens associated with the Arg135Trp mutation in the Rhodopsin gene[J]. Am J Ophthalmol.1996,121:19-25.

〔23〕 Molday RS,Hicks O,Molday L[J]. Invest Ophthalmol Vis Sci.1987,28:25.

〔24〕 Kajiwara K,Sandberg MA,Berson EL,et al.A null mutation in human peripherin/RDS gene in a family with autosomal dominant retinitis punctata albscens[J].Nature Genet.1993,3:208-212.

〔25〕 Hoyng CB,Ucutind P,Testers L,et al.Autosomal anninant contral areolar choroidal dystrophy caused by a mutation in codoe 142 inthe peripherin/RDS gene[J]. Am J Ophthalmol.1996,121(6):639-9.

〔26〕Barkur S,Shastry,Michael T,et al.Identification of a polymorphic missense (G338D) and slient (106V and 121L) mutations within the coding region of the peripherin/RDS gene in a patient with retinitis punctata albscens[J].Biochemical and biophysical research communications.1997,231:103-105.

上一篇:葡萄糖转运子1的表达与糖尿病性白内障关系的研... 下一篇:血管生成素在脉络膜新生血管中的作用