超大深基坑工程关键施工技术的研究

时间:2022-06-17 04:41:21

超大深基坑工程关键施工技术的研究

【摘要】近年来,愈来愈多的地下空间在城市中得到开发利用,由于深基坑、超深基坑(深度30m以上)开挖引起的环境效应问题日益突出,超深地下工程设计、施工的关键技术已成为岩土工程界面临的重要的研究课题。本文将围绕超大深基坑工程关键施工技术进行研究。

【关键词】超大深基坑工程关键施工技术研究

中图分类号:TU74 文献标识码:A 文章编号:

一、关键施工技术

1、施工顺序

本基坑工程总体施工顺序为:测放基坑线开挖地槽、桩机就位复测桩位施工支护桩、旋喷桩钻进钻孔、喷射水泥浆二次挖地槽凿钻孔桩桩头降水井施工、降水施工圈梁开挖土方、施工土钉基坑监测。

2、桩间土钉施工技术

采用中800@1200mm钻孔灌注桩+桩间中140x3.smm@:1200mm钢管土钉复合结构作为支护方案,如图3所示。钻孔灌注桩支护桩间采用中800@1200mm二重管高压旋喷桩止水,坑内采用管井降低地下水位,坑外布设一定数量观测井(回灌井)。为了增强基坑支护桩的刚度,提高整体支护体系的稳定性,要在支护桩上的顶圈梁混凝土强度达到设计要求后,才能进行下一步支护桩的钢管±钉施工。钢管土钉与桩间的连接节点构造如图4所示。土钉的施工方案采用项管工艺法,顶进的长度根据设计要求确定。待施工结束后进行抗拉试验,测承载力,并评估设计方案。如果此方案切实可行,再进行后续推广使用。

3、旋喷桩施工技术

这里以二重管喷射为例。它是一种浆、气喷射,浆液灌注搅拌混合的方法,即用二重喷射管使高压水泥浆和空气同时横向喷射,并切割地基土体,借助空气的上升力把破碎的土由地表排除:与此同时,使水泥与土达到止水及加固目的。本次设计桩径≥800mm,桩间lEEl200、1300和1500mm。旋喷桩机在施工中的提升速度按设计要求严格控制在0.1m/min,钻机垂直度偏差不得超过0.3%,枕木应垫实,以保证钻机的平稳与垂直。旋喷桩选用普通硅酸盐32.5级水泥,旋喷桩主要是止水作用,水泥进场后要注意防潮和防雨。设计要求水泥用量不少于40%,其水灰比为l:1。确保单桩喷浆量是桩体质量的基本保证。根据喷射工

艺,设计要求喷浆压力20MPa,提升速度8~10crn/min。浆液的可喷性与其稠度有较大关系,浆液稠度过大,可喷性差,往往会使喷嘴及输浆管堵塞,同时易磨损高压泵,使喷射难以进行。本工程水泥浆的水灰比为1.0。施工前3根桩必须在监理监管下进行,以确定实

际水泥投放量、浆液水灰比、浆液输送时间、桩长及垂直度控制要求,确保旋喷桩止水效果,保证桩体质量。

4、挂网喷浆放坡支护技术

(1)施工流程

放边坡线修整坡面钢筋土钉、分布筋施工喷射混凝土。根据设计要求,边坡为两级放坡,中间设2m宽的马道(见图5)。

(2)施工工艺、材料、技术参数

锤击土钉采用中1 8@l 000mn饵l 000mm,L=l000mm,钢筋(平面梅花形布置)网片为中6@200ram×200mm;土钉墙面层厚80mm,分两次喷射;细石混凝土强度等级为C20,3天强度不低于10MPa,碎石最大粒径应小于l0mm,喷射压力为0.3~0.5MPa;喷射作业分段进行,同一段顺序自下而上。

5、高压线杆处支护桩顶圈梁施工技术

一期工程的基坑支护桩施工,在南侧围墙内约1.8m及围墙外侧2.3m有两根高压线杆,~根为铁塔式,另一根为水泥杆,上挂l0kV的6根高压线,且高压线距钻井架最高处约lm。根据基坑支护的设计要求,通过南侧圈梁的施工,将高压线杆的固定转换至圈梁上,用圈梁来固定高压线杆,并加强电线杆和变电箱的稳定性。详见图6、图7。

为了确保南侧支护桩施工过程中的安全,采取了以下措施:

(1)将支护桩施工场地约7m宽的土取走1.5m深,使钻井机架整体下降1.5m,以保证钻井机架与高压线有足够的安全距离。

(2)在围墙外侧,沿高压线杆靠近施工面这一侧,分别搭设两座毛竹防护架,毛竹防护架的平面形状为2.3m×1.7m的矩形,四角设立杆,并设横杆扫地杆,间距为1.8m。四面均设置斜撑,靠近围墙一侧用12号铅丝将毛竹防护架与围墙拉结绑扎,确保毛竹防护架

的整体刚度和稳定性,搭设高度略比机架高l00mm,靠近机架增设小横杆,从而确保支护桩在电线杆一侧施工时的安全可靠。

6、土方开挖施工技术

基坑开挖中充分考虑时空效应规则,遵循分区、分块、分层、对称、平衡、合理卸载的原则。本工程将基坑开挖平面分成4个区域,如图8所示。先进行I区范围内的土方开挖,沿整个西侧支护桩的位置整体由西往东进行,水平方向开挖宽度约30m左右,含放坡尺寸。垂直方向从自然地坪开挖至各层土钉墙位置往下lm左右,最后挖至比设计基坑底面标高高出lm左右,以防止扰动基层。在开挖的同时,南侧预留放坡,按照设计要求配合在东侧、北侧做

好二级放坡的开挖施工。一级坡比1:1;马道宽2m,位于一5.3m处;二级坡比1:1.2。开挖深度较深时,采用阶梯式的开挖方法进行开挖。II区土方开挖时,按照设计要求配合在北侧、东侧做好二级放坡的开挖施工,II区地下室负2层项板施工完成后才能进行III区的土方开挖;III区的地下室负2层顶板施工完成后,才能进行Ⅳ区的土方开挖。

7、降水施工技术

(1)降水井设计

根据基坑开挖深度,设计井深为20m,井口高于自然地面0.5m;井管采用钢筋混凝土预制管,外径360mm,内径300mm,端部预埋钢圈,井管之间焊接连接。滤管,即在井管预留滤水孔的基础上外包两层60目滤网,并绑扎牢固。滤料含泥量小于5%,且粒径1~3nun,从孔口投入井管周边。

(2)降水运行

施工完一口井即投入试运行一口,试运行抽水时间控制在3天,并做好出水质量和出水量检查。正式降水运行14天后进行土方开挖。

(3)降水井封井

随着工程的进展,土方开挖前施工的降水井逐步退出使用。为了确保降水井在封堵后不渗漏,降水井的封堵工作尤为重要。降水井的封堵必须在后浇带施工完毕,根据设计及规范要求,征得设计同意后,逐一进行。

二、深基坑工程监测

1、基坑工程除进行安全可靠的围护体系设计、施工外,尚应进行现场监测,做到信息化施工,基坑围护体系随着开挖深度增加必然会产生侧向变位,关键是侧向变位的发展趋势与控制。通常围护体系的破坏是有预兆的,因此进行严密的基坑监测是非常重要的,通过专业基坑监测单位的监测情况可及时了解围护体系的受力状况,可以达到及时校正、修正施工方案和指导现场施工的目的,使基坑处于安全可控状态。

2、该工程基坑的监测,由专业人员对深层土移、地下水位、围护桩、立柱桩的竖向位移、支撑杆件的轴力进行严密监测,土方开挖至基础施工阶段以每天1 至2 次的监测频率测试,除对以上基坑本身监测外还应对周围建筑物(基坑深度的2 倍范围)及地下管线进行监测并及时将观测资料反馈给建设、施工、监理、设计等单位以便及时分析处理。通过日常观测及专业单位的监测来确保基坑施工及周边环境的安全。以免给人民群众的生命、财产造成损失。

总结

我国的深基坑工程施工难度在不断的增加,这对深基坑的施工技术提出更高的要求,一个安全合理的施工技术是既要确保基础安全,顺利地施工,又要考虑方便施工,经济合理。在具体分析工程地质水文,工程特点状况下,对施工技术提出合理方案,针对不同土质的工程性质及具体工程实践,这样才可以做好建筑深基坑施工。

【参考文献】

[1]王玉芹,高秀丽. 论述建筑工程中基坑开挖与支护施工技术[J].科技与企业, 2012,(02)

[2]邹腾辉 超大深基坑单边采用六级放坡挖土的施工实践[期刊论文]-建筑施工2010,32(3)

[3]王文光 广州地铁三号线客村站深基坑施工技术[期刊论文]-广州建筑2004(z1)

[4]李万玉.吴立基坑放坡安全开挖的设计与施工[期刊论文]-安全与环境工程2004,11(4)

[5]唐兰远 深基坑支护方案特点的研究[期刊论文]-探矿工程-岩土钻掘工程2004,31(9)

[6]潘天雄.基坑支护工程的施工技术与质量控制研究[J].科学与财富,2010,(12):45,27.

上一篇:高压电缆局部放电带电检测系统研究 下一篇:简述城市道路交叉口的设计及改善措施