980钢组织与力学性能探究

时间:2022-05-27 11:39:53

980钢组织与力学性能探究

1试验材料和方法

试样采用980钢试样,尺寸为150mm×50mm×20mm,共制作4个试样,打钢印进行标记。试验使用炉膛为260mm×160mm×100mm的实验室箱式炉。热处理工艺为调质,即860℃×0.5h水冷10s转油冷至室温+620℃×1h回火,开炉门冷却至室温,工艺曲线如图1所示。对1号试样不进行调质,对2号试样进行一次调质,3号试样进行两次调质,4号试样进行三次调质,每次调质工艺相同。试样经打磨、抛光、4%硝酸酒精侵蚀后,于高倍金相电子显微镜下观察显微组织。按照GB/T228.1—2010《拉伸试验第一部分:室温试验方法》进行试样制作和拉伸试验;按照GB/T229—2007《金属材料夏比摆锤冲击试验方法》进行试样制作和低温冲击试验。

2试验结果与讨论

2.1调质次数对力学性能的影响

980钢经过不同次数调质后的力学性能如表1及图2所示。结果表明,980钢经过第一次调质后,强度显著提高,但低温冲击吸收能量无明显提高。980钢经过第二次调质,强度与第一次调质相比无明显变化,低温冲击吸收能量显著提高。980钢经过第三次调质,强度与第一次调质相比无明显变化,低温冲击吸收能量略有降低。

2.2调质次数对显微组织的影响

为不同次数调质态980钢的显微照片。可以看出,980钢未进行调质时,组织为铁素体,晶粒度级别为7.0级,进行第一次调质后,组织为回火索氏体和残留奥氏体,晶粒度级别为7.5级,存在颗粒状碳化物。经过第二次调质,残留奥氏体基本消失,为回火索氏体,晶粒度级别提高到8.0级,存在少量颗粒状碳化物。当进行第三次调质时,组织为回火索氏体和粒状珠光体,晶粒度级别为8.0级。回火索氏体是铁素体与粒状渗碳体的混合物。回火索氏体使钢的脆性降低,冲击性能提高[3]。析出的细小颗粒状碳化物,作为第二相质点,可以阻碍晶界的迁移长大,所以,随着调质次数增加,晶粒细化。此外,淬火的冷却过程存在形核和核心长大的过程。淬火冷却时间受到控制,新的晶粒没有长大到原始晶粒尺寸时,重新进行加热后冷却,再一次进行形核和核心长大,在原始晶粒中形成多个细小的晶粒,晶粒得到细化。钢的冲击韧性与晶粒大小有关[4],韧脆转变温度T与晶粒直径d的关系可用公式T=K-lnd-1/3描述,因此,细化晶粒可以提高钢的冲击性能。从屈服和抗拉强度来看,经过第二次调质,980钢的屈服强度和抗拉强度明显提高,这可能与晶粒得到细化有直接关系。塑性变形过程中,由外加切应力直接引起滑移的晶粒只占少数,多数晶粒的塑性变形是由前面晶粒中的位错塞积群的应力集中所引起的,只有所有晶粒都进行了塑性变形,才会引起塑性变形的宏观效果,它的作用效果与晶粒尺寸有关。可见,通过细化晶粒,可以提高屈服强度和抗拉强度。

3结论

1)980钢经过第一次调质,屈服强度和抗拉强度明显提高,低温冲击吸收能量提高不明显,显微组织为回火索氏体和残留奥氏体。经过第二次调质,屈服和抗拉强度无明显变化,低温冲击吸收能量显著提高,显微组织转变为回火索氏体,晶界变得明显,晶粒得到细化。经过第三次调质,屈服强度、抗拉强度无明显变化,低温冲击吸收能量略有降低,显微组织为回火索氏体和粒状珠光体。2)980钢经过两次调质处理后,力学性能显著提高,效果最好。

作者:陈亮 单位:武汉船用机械有限责任公司

上一篇:仿生功能梯度层力学性能分析 下一篇:指状电磁铁结构设计研究