反证法在近世代数中的应用

时间:2022-05-13 02:38:47

反证法在近世代数中的应用

摘 要: 反证法可用于证明近世代数中一些疑难问题.反证法在数学命题的证明中起着直接证法起不到的作用.如果能恰当使用反证法,就可以化繁为简,化难为易,化不可能为可能.

关键词: 反证法 近世代数 群 环

近世代数是一门较抽象的课程.它的主要研究对象是代数系统,即带有运算的集合.由于内容抽象,初学者往往会感到困难重重,尤其对于证明,不知如何从哪方面下手.其实,在掌握好它的基本概念、性质和定理的前提下,它所用的思考方式和手段,很多都是数学证明里常用的,如,类比、归化、转化、反证等.反证法在近世代数的证明中用途极其广泛.它在数学命题的证明中有直接证法所起不到的作用,如果能恰当地使用反证法,就可以化繁为简、化难为易、化不可能为可能.

反证法是分析问题和解决问题的一种科学方法.反证法又叫归谬法、背理法,是数学中常用的一种命题证明方法.反证法是对数学命题的一种间接证法,其理论依据是形式逻辑中的“排中律”和“矛盾律”.这种方法是从反面进行证明,即肯定题设而否定结论,从而得出矛盾,使命题获得证明.有关“存在性”、“否定性”、“无限性”的命题,应用反证法的情况较多.在近世代数中,有些问题直接利用定理结论证明或用定义直接验证较困难时,可考虑使用反证法.本文就子群的阶、同构、主理想、素理想四个近世代数中几个重点难点内容展开讨论,希望学生在学习过程中由此能得到点滴启发.

反证法证题的步骤是:1.反设:反设是应用反证法证题的第一步,也是关键一步,反设的结论作为下一步“归谬”的一个已知条件.反设的意义在于假设所有证明的命题的结论不成立,而结论的反面成立;2.归谬:“归谬”是一个用反证法证题的核心,其含义是从命题结论的“反设”及原命题的已知条件出发,进行正确严密的推理,推出与已知条件、定义、定理、公理等相矛盾或自相矛盾的结果;3.结论:指出“反设”是错误的,原命题结论必正确.

1.反证法在子群阶中的应用

例1.设p,q是两个素数,且p

分析:这个结论易通过Sylow定理得到,但[1]中没有涉及Sylow定理,通过反证法可轻松证得.题目要证明至多存在一个子群,我们可以假设存在两个不同的子群.

证明:设H,K是群G的两个不同的q阶子群,但由于|H∩K|| |H|=q,且q是素数,故|H∩K|=q或1.

若|H∩K|=q,则由H∩K≤H且H∩K≤K知H∩K≤=H=K,与H≠K矛盾.

注:从这一例题中可以看到,直接说明pq阶群G最多有一个q阶群难度相当大,但如果假设有两个不同q阶子群,通过推理出现矛盾,则说明最多有一个q阶子群.

2.反证法在同构中的应用

同构在近世代数中是一个非常重要的基本概念.如果忽略掉同构的对象的属性或操作的具体定义,单从结构上讲,同构的对象是完全等价的.简单来说,同构是一个保持结构的双射.在更一般的范畴论语言中,同构指的是一个态射,且存在另一个态射,使得两者的复合是一个恒等态射.

换言之,G的乘法表是唯一确定的.因此阶为6的非交换群存在且互相同构.

注:这一证明题不是一开始就给予结论否定,而是在证明中部分地方利用了反证法.如|b|≠3.若|b|=3,则在后面的推论中出现矛盾.

3.反证法在环中的应用

例3.证明卡普兰斯基(Kaplansky)定理:设R是一个有单位元用1表示的环,如果R的元素a有一个以上的右逆元,则a就有无限多个右逆元.

4.反证法在理想中的应用

注:说明极大理想都是素理想,可以假设有一个极大理想不是素理想,根据这一假设推出矛盾.

数学思维方法的训练是实现“授之以渔”教学举措的有效手段,我们应该在教学中有意识、有计划、有目的地利用不同类型的问题,从不同视角、不同途径分析、思考和探索,帮助学生拓展证题思路,形成良好的数学思维品质.善于反思,巧妙利用反证是解决数学问题的重要方法和策略,不仅能揭示数学知识的内在联系、规律和相互关系,更能从复杂问题中找到突破口,从而避免繁琐的证题过程,有效提高学生分析问题和解决问题的能力,培养学生的探索和创新精神.

参考文献:

[1]张禾瑞.近世代数基础[M].北京:高等教育出版社,1998.

[2]汪秀羌.反证法的应用[J].工科数学,1997,2:163-166.

[3]唐娜.浅谈如何加强大学素质教育[J].学园,2010,12:25-26.

[4]赫尔(M.Hall).群论[M].科学出版社,1981:56-124.

[5]韦建辉.例谈反证法的应用[J].南宁师范高等专科学校学报,2000,2:70-71.

上一篇:教师职能转变,促进学生名著阅读能力提高 下一篇:谈数学课中多媒体的应用