Mathematica在电动力学课程教学中的应用探索

时间:2022-05-03 12:46:44

Mathematica在电动力学课程教学中的应用探索

摘要:电动力学是电子、信息、通信、物理等学科的主干课程之一,有较高的抽象性,要求学生具备较好的数学基础,一直是专业课程教学中的难点。Mathematica工具软件很好地结合了数值和符号计算,配以直观的图形展示和动态交互,对很多概念可以具体呈现,在教学中能起到很大作用。本文以电动力学教学中的部分难点为例,探讨了Mathematica引入电动力学课程教学的应用,对两者有机结合、建立课堂教学辅助软件进行了探讨。

关键字:Mathematica,电动力学,课堂教学

中图分类号:G423.07 文献标识码:A文章编号:1674-098X(2015)05(a)-0000-00

引言

大学高等教育通常致力于培养专业基础扎实、有较强实践能力和拓展潜力、富有创新精神的本科人才。其中理工科专业要求学生系统掌握专业基础理论、基本实验方法和实验技能,并具有较强的数理基础。近些年,大学普遍扩招,生源质量下降,学生数学基础不够扎实,冷门专业情况更是严重,不少学生往往因专业知识在数学计算上的复杂及相关定理、概念和过程的抽象等问题而失去学习兴趣,导致专业课的教学学习效果不够理想[1]。

基于此种情况,已有不少人把多种现代教育技术如Matlab,Java,Mathematica等软件应用到课堂教学中[2, 3],使现代教学技术在提高学生学习积极性、优化课堂、提高课堂效率等方面取得了较好的效果。Mathematica是一款科学计算软件,其很好地结合了数值和符号计算引擎、图形系统、编程语言、文本系统以及与其他应用程序的高级连接。很多功能在相应领域内处于世界领先地位,截至2014年,它也是世界上使用最广泛的数学软件之一。普遍认为Mathematica的标志着现代科技计算的开始,它是世界上通用计算系统中最强大的系统。自从1988以来,它已经对科技和其它领域中计算机的运用方式产生了深刻的影响,并且在国外教学工作中获得了广泛的应用[4, 5]。从google学术搜索中搜寻Mathematica以及Education相关条目,有近十万条结果。从高中到研究生数以百计的课程都使用它,并有多本关于Mathematica教学的图书出版,涵盖多门专业教学。Karim等人[5]甚至还基于Mathematica软件开展了远程教学。而在我国,虽然教师们对于现代化手段在教学中的应用很早就开展了研究,但是一直以来不够重视,特别是Mathematica软件在教学中的应用和国际相比还处于初级阶段,还没有得到广大教师的足够重视和普遍使用。这从google学术检索中就可以发现,Mathematica与教育教学等词条相关的论文搜索结果还不到三千条。相关教学论文数量不够充分,内容也还很不深入,相关中文教材也处于缺乏状态,并且这些研究主要分布于大学物理以及数学分析这两门课程[2, 3, 6]。对于Mathematica在数学、物理等数学要求较高的大学各专业核心课程教学中的应用工作还未深入展开,而物理、电子等系核心专业课之一――电动力学的数学要求远比普通理工科专业高,因此本文欲在前人研究基础上,以电动力学部分难点的教学工作为例,展开深入分析,力图引入Mathematica软件辅助教学,消除学生对复杂公式的畏惧感,直观准确地展示各种物理图像,使学生对课程的学习有良好的进步。

1 应用

本文研究目的旨在借助于Mathematica软件将学生从复杂的微分偏微分方程求解过程中解放出来,并用图形和动画直观展示各重点难点,从而降低专业课的学习难度,达到提高学生学习积极性的目的,并使学生初步掌握Mathematica软件的使用方法,提高他们学习新事物的能力。

电动力学是很多大学专业的主干课程之一,如电子、信息、通信、物理等学科。其主要内容就是麦克斯韦方程组的来由及其在各种条件下的具体应用。此处我们以电磁波的传播为例,在瞬变条件下,变化的电场和磁场相互激发,形成在空间传播的电磁波。单从字面描述以及电磁波方程来看,较为抽象。学生一般很难理解。通过使用Mathematica软件,我们可以将平面电磁波的传播用图1展示。从图1中可以清晰看出平面电磁波的几个特性:1,平面电磁波是横波;2,电场、磁场以及传播方向三者是相互垂直的; 3,电场和磁场是同位相。

图1是静态图,实际上,通过图2所示代码,我们还可以用动画演示电磁波的传播。图2所示代码形式简洁,接近于自然语言,这样就让学生无须较高的编程水平即可自行编写代码,容易激发学生的学习兴趣。图2所示代码会生成一个简洁易懂,易于操作的界面,可以通过设置循环播放,良好地演示电磁波的传播。通过“waves”按钮可以分别演示不同个数的完整波形,时间轴可以快速或慢速地动态演示电磁波的传播过程,让学生轻松理解电磁波传播过程。

除了平面电磁波在无界空间的自由传播之外,平面电磁波在两块平行板之间的传播,也能形象清晰地展示。如图3所示,此图可以大大加深学生对电磁波传播的理解,便于学生学习。诚然此图所需代码较为复杂,不仅需要相关的电动力学知识,还必须熟悉偏微分方程求解理论,此外对Mathematica软件的使用熟悉程度也有要求,学生难以短时间内独立完成,需要进一步的训练之后才可能完成。类似的内容可以让学生课后完成,作为考核内容,这样可避免学生过于依赖该软件而忽视数学学习的重要性。

总而言之,Mathematica应用到电动力学课堂教学中,能让教学过程更生动,促进学生学习理解。

2 结束语

当前我国大学专业课教学中,数学分析软件的使用还处于初级阶段。学生薄弱的数学基础与专业课较高的数学分析要求是专业课学习过程中的主要矛盾之一。本文着力于解决由学生薄弱的数学基础和抽象的专业概念所引起的在专业课学习上的困难,让学生开阔视野,并培养学生利用工具软件的能力。从而可以将专业课学习过程中的复杂数学问题交给专业数学分析软件Mathematica来进行,学生只需掌握基本的数学原理,了解相关知识,配合Mathematica丰富的互动界面和图形显示功能,就能达到更充分更深层次理解内容本质的目的。本文重点有机衔接了电动力学与Mathematica软件,通过Mathematica在电动力学课堂教学上的使用,达到加强基本理论教学,扩展学生视野,引导学生关注科学前沿的发展动态,并训练学生的创新精神,而且避免了学生过于依赖该软件而置数学于不顾的情况。对于电动力学课程中的主要内容,可以建立一系列相应的数值程序,进而开发一个系统性的课件,辅助课堂教学,这将会对教学效果产生很大的促进作用。

参考文献

[1] 罗琬华. 对电动力学课程改革的研究[J]. 西南师范大学学报: 自然科学版. 2008, (6).

[2] 郝艳莉, 张滨燕. 数学软件 Mathematica 在高等数学教学中的应用[J]. 南通航运职业技术学院学报. 2009, 8(3): 120-123.

[3] 孙晓玲, 王宁. 利用 Mathematica 实验教学融入数学思想的研究与实践[J]. 合肥师范学院学报. 2009, (3): 32-34.

[4] N.F. Britton. Essential mathematical biology[M]. Springer, 2003.

[5] M.F.A. Karim, A.A. Kamil. Mathematica? as a Tool for Studying Mathematics in Distance Learning Environment[J]. Malaysian Journal of Distance Education. 2011, 13(2): 95-107.

[6] 刘雄伟, 李建平, 胡小荣. 利用 Mathematica 软件改善高等数学教学效果的实践[J]. 中国教育技术装备. 2007, (4): 17-19.

上一篇:CDIO工程教育模式在递进式物理化学实验教学中... 下一篇:材料力学教学中细长杆临界压力的试验研究