超长结构无缝施工的裂缝控制

时间:2022-04-05 01:35:16

超长结构无缝施工的裂缝控制

摘要:近年来,各种平面尺寸超长、超大的大型公共建筑、厂房结构、商业中心等迅速涌现,超长混凝土结构的数量越来越多。在超长混凝土结构中,混凝土收缩及温度变形由于受到约束产生的间接应力常常引起结构大面积的开裂,业主及建筑师一般要求结构不设置伸缩缝,超长混凝土结构必须通过采取合理的技术和施工措施以达到裂缝控制的目的。对超长、大体积混凝土结构的裂缝问题,应作为一个非常值得讨论和研究的课题加以重视,以确保结构的安全性。

关键词:超长结构; 无缝; 施工; 裂缝; 控制; 技术

Abstract: in recent years, various plane size large extend, the large-scale public buildings, factory buildings structure, business center for rapidly emerging, the number of overlong concrete structure more and more. In overlong concrete structure, shrinkage of concrete and temperature deformation due to restrictions on the indirect stress often caused structure area of the craze, owner and architect general requirement structure set expansion joints, overlong concrete structure must pass to take reasonable technology and construction measures to achieve the purpose of crack control. To extend, mass concrete structure of the crack problem, should be as a very worth discussing and subjects of study taken seriously, to ensure the safety of the structure.

Keywords: super-long structure; Seamless; The construction; Crack; Control; technology

中图分类号:TU74文献标识码:A 文章编号:

一、目前混凝土工程裂缝规律简介

目前我国混凝土工程裂缝有以下规律:

1、墙体、梁板结构裂缝较多,有些工程墙体裂缝达到每隔3~5m就有一道竖向裂缝。见示意图2。

2、混凝土强度等级越高,混凝土裂缝越多。

3、地上楼板混凝土构件裂缝也比较常见,呈不规则状(见图3)。

4、结构突变处裂缝较多,如楼梯口、门窗、预留洞等(见图4)。

5、时间性:裂缝出现大大提前,严重时,拆模时就已产生裂缝。目前混凝土开裂多发在早期(施工阶段),一般3~10天,混凝土就产生了大量的裂缝。混凝土后期裂缝原因复杂,在此不一一阐述。

以上所述的裂缝规律并不是因为结构超长引起的,即使结构不超长(已经留置后浇带),上述的裂缝照样经常出现。这些裂缝宽度一般不会超过0.3mm,可以说不影响结构的安全性,但对工程的耐久性和防水性会带来一些影响。

超长裂缝结构产生的原因及分类

混凝土裂缝产生的原因是多方面的,情况较为复杂,综合原因很多。工程实践证明,裂缝形成的原因主要有三个方面:变形、荷载及不均匀沉降。一般由温差、收缩、不均匀沉降等引起的变形形成的裂缝占80%,荷载造成的占20%。而对于超长结构、大体积混凝土产生的裂缝主要有以下两种。

1、温差裂缝:大体积混凝土在硬化初期,水泥水化产生大量水化热,使混凝土中心温度急剧增高,而混凝土表面和边界温度受外界气温影响,温度较低,这样形成较大的内外温度差,结果混凝土内部产生压应力,面层产生拉应力,当该拉应力超过混凝土抗拉强度时,混凝土表面产生裂缝。施工阶段所产生的温度裂缝,是其内部矛盾发展的结果。

2、收缩裂缝:混凝土浇筑后数日,水泥水化热基本已释放,混凝土从高温逐渐降温,降温结果引起混凝土收缩,再加上由于混凝土内部拌合水分蒸发等引起的体积收缩变形,受到地基和结构本身的约束,不能自由变形,导致产生温度应力(拉应力)。该温度应力超过混凝土抗拉极限强度时,则从约束面开始向上开裂形成收缩裂缝。

无缝设计的含义

所谓无缝设计是个相对概念,根据结构情况,可无缝或少缝。它不包括沉降缝。它指的是释放收缩应力的后浇带,其设计思路是:抗放兼备、以抗为主的原则。也即用CSA抗裂防水剂或膨胀剂补偿收缩混凝土作为结构材料,在硬化过程中产生的膨胀作用,由于钢筋和邻位约束,在结构中建立少量预压应力σ。

考虑结构强度的安全,膨胀不能太大,且在硬化14d基本结束。经研究,CSA替代水泥量8~12%范围内,对强度不影响,其膨胀率ε2=(2~3)×10-4, 在配筋率υ=0.2~0.8%下,可在结构中建立0.2~0.7Mpa预压应力,这一预压应力大致可以补偿混凝土在硬化过程中产生温差和千缩的拉应力,从而防止收缩裂缝,或把裂缝控制在无害裂缝范围内。

四、控制裂缝的措施

防止超长结构、大体积混凝土出现温度裂缝应从两方面出发,一方面应从控制温度、改善约束,即从减少温度应力着手;另一方面应尽可能设法提高混凝土抗裂能力,改善混凝土自身性能。

1、合理选择原材料,优化混凝土配合比:选择混凝土原材料,优化混凝土配合比的目的是使混凝土具有较高的抗裂能力,具体来说,就是要求混凝土绝热温升较小,抗拉强度较大、极限拉伸变形能力较大、热强比较小,自生体积变形小。

(1)、水泥品种选择及数量要求:水泥水化产生的水化热是大体积混凝土发生温度变化而导致体积变化的主要根源。由于矿物成分及掺合料含量的不同,水泥的水化热差异较大。水泥活性和强度等级增加,其收缩量显著增高、收缩周期长。另外,除采用水化热低的水泥外,要减少温度变形,在保证混凝土强度的情况下,应尽量降低单方水泥用量。

(2)、掺用混合材料:掺加粉煤灰等掺合料可以降低水泥用量,从而有效降低水化热的峰值温度,推迟水化热温峰的出现时间;还可以改善混凝土拌合物的和易性,提高混凝土的可操作性,同时具有明显的经济效益。

(3)、掺外加剂:宜采用缓凝型高效减水剂,以达到降低水泥用量、降低水化升温、推迟了水化热峰值出现的时间、提高砼工作性等目的。

(4)、掺用抗裂剂:TB-CSA的掺入不仅能补偿混凝土的收缩,而且能降低10~15%左右的水化热,更重要的是能降低砼的综合温差,使砼内部温度与环境温度控制在25℃以内,避免混凝土由于温差过大而产生裂缝。

(5)、使用混凝土抗裂纤维:混凝土的塑性开裂主要发生在混凝土硬化之前,特别是混凝土浇注后4~5小时内,此阶段由于水分的蒸发转移,而引起混凝土内部塑性裂缝的产生。混凝土中掺入抗裂纤维后,由于纤维分布均匀,起到类似网状作用,延缓或阻止早期混凝土塑性裂缝的发生和发展,极大地减少收缩裂缝,有效的抑制贯通裂缝的产生。

2、合理进行温度控制:混凝土允许的内外温差与混凝土材料的抗拉强度有关。如混凝土质量好,抗拉强度高,就能抵抗较大的温度应力。通过大量工程的实践和理论研究,当混凝土结构内外温差控制在25℃以下时,混凝土一般不会因温度应力过大而使结构物产生早期的裂缝,因此,必须对混凝土内外温度进行控制。对于大体积混凝土的温度控制,主要考虑三个特征值:入模温度、最高温度及养护温度。

(1)、入模温度控制:混凝土的入模温度取决于各种原材料的初始温度,主要办法是施工时加冰冷却拌合水(对于气温较高时)、骨料、水泥,尽量选择较低气温时段浇筑混凝土;

(2)、最高温度控制:有条件的话,在混凝土内部预埋水管,利用冷却水管内流通的制冷水带走大体积混凝土内部积聚的水泥水化热,削弱浇筑层水化热温升。这种方法因具有适用性和灵活性,而且能够控制整个结构物内部温度,所以在国内外得到广泛应用。

(3)、养护温度控制:大体积混凝土的裂缝,特别是表面裂缝,主要是由于混凝土中产生了温度梯度。为了使大体积混凝土的内外温差降低,可采用混凝土表面保温的方法,使混凝土内外温差降低。常用的保温材料有模板、草袋、锯末等。保温材料不仅要放置在混凝土的表面,还要注意结构物四周的保温。

3、分缝分块浇筑:分缝分块有两方面的目的:一方面为了便于施工,将尺寸较大的结构物逐块逐层地进行浇筑;同时为了防止裂缝,增加了散热面,减小了应力约束,加快了热量释放,从而减小了收缩应力,并保证层与层浇筑间隔不超过砼初凝时间。

4、加强施工温度监测:对大体积混凝土内部各部位进行温度跟踪监测,可以及时准确地掌握混凝土各个部位的温度变化,以便采取处理措施降低内部温度,保证工程质量。

五、结语

通过工程实践我们认识到:依据工程实际情况合理布置膨胀加强带、正确选择膨胀剂、优选混凝土配合比至关重要,是大体积超长结构抗裂技术重要的支撑,而混凝土浇筑施工、养护等关键环节是实现大体积超长结构抗裂的重要手段,二者缺一不可。

注:文章内所有公式及图表请以PDF形式查看。

上一篇:现代家具的产生派别及其北欧设计的意义 下一篇:沥青路面坑槽病害的治理