正射遥感影像图的制作方法研究

时间:2022-02-23 11:32:48

正射遥感影像图的制作方法研究

【摘 要】数字正射影像图是地理信息的真实写照,具有地图的几何精度和影像特征,已经成为国家空间数据基础设施和数字地球的基础空间数据框架的一部分。文中以某地区卫星遥感影像数据为例,应用遥感图像处理软件,经过遥感影像融合、正射校正等处理生成数字正射影像图。

【关键词】影像融合;正射校正;遥感影像

0.引言

数字正射影像图是将航空影像数据或航天遥感数据,经过辐射校正几何校正,并利用数字高程模型进行投影差改正,附之以主要居民地、地名、境界等矢量数据,按国家基本比例尺地形图图幅范围剪裁生成的正射影像数据集。为了满足不同用户对遥感数据的要求,利用高分辨率遥感卫星数据制作较大比例尺的数字正射影像图就有了其研究、发展和应用的空间。

1.正射遥感影像图制作基本原理及方法

1.1 几何纠正原理

数字图像纠正的目的是改正原始图像的几何变形,产生一幅符合某种地图投影或图形表达要求的新图像。像素坐标变换和像素亮度值重采样是数字图像纠正的两个环节,并且它们在纠正过程中是同步进行的。

(1)像素坐标变换是通过建立纠正函数来实现的,多项式纠正方法是实践中经常使用的一种方法。该方法的基本思想是回避成像的空间几何过程,而直接对图像变形的本身进行数字模拟,它认为遥感图像的总体变形可以看作是平移、缩放、旋转、仿射、偏扭、弯曲以及更高次的基本变形的综合作用结果,因而纠正前后图像相应点之间的坐标关系可以用一个适当的多项式来表达,校正误差可以通过对均方差估计求得。

(2)数字图像亮度值的重采样。由于位置计算后找到的对应的x和y值,多数不在原来像元的中心,因而必须重新计算新位置的亮度值。做法是采用适当的方法把该点位周围邻近整数点位上亮度值对该点的亮度贡献积累起来,构成该点位的新亮度值,这个过程称为数字图像亮度值的重采样。

1.2 正射校正原理

正射纠正的实质就是将中心投影的影像通过数字元纠正形成正射投影的过程,其原理是将影像化为很多微小的区域,根据有关的参数利用相应的构像方程式,求得解算模型然后利用数字元高程模型对原始非正射影像进行纠正,使其转换为正射影像。正射纠正是一种高精度的几何纠正,是利用数字高程模型对卫星影像进行逐点数字微分纠正,用以消除卫星遥感影像和航空遥感影像由于地形起伏等引起的像点位移。采用共线条件方程纠正法进行正射纠正。

1.3 融合原理

分辨率融合是将不同空间分辨率遥感图像按照一定的算法,在规定的坐标系中,生成新图像的过程。处理后的图像既具有较高的空间分辨率,又具有较好的多光谱特征,从而达到图像增强的目的。高分辨率影像与多光谱数据的融合是遥感影像进行正射校正的基础。融合方法的选择,取决于被融合图像的特征以及融合的目的,ERDAS IMAGINE 系统所提供的图像融合方法有三种:主成分变换融合、乘积变换融合和比值变换融合。

1.4 数字高程模型

数字地面模型(DTM)是地形表面形态等多种信息的一个数字表示。严格地说,DTM是,其向量的分量为地形、资源、环境、土地利用、人口分布等多种信息的定量或定性描述。DTM是一个地理数据库的基本内核,若只考虑DTM的地形分量,称其为数字高程模型DEM或DHM,其定义如下:

DEM是表示区域D上地形的三维向量有限序列,其中是平面坐标,是对应的高程。当该序列中各向量的平面点位呈规则格网排列时,则其平面坐标可省略,此时DEM就简化为一维向量序列,这也是DEM或DHM名称的原有。

2.正射遥感影像图处理制作

2.1 ERDAS下遥感影像融合处理

这里选择Brovey变换法,此融合结果一个明显的表现就是色调非常良好,几乎完整保持了原始影像的色调信息。

影像融合的具体操作步骤如下:

ERDAS图标面板工具条上,单击Interpreter图标Spatial Enhancement,打开Resolution Merge对话框,调入需要融合的全色影像数据和多光谱影像数据,选择融合方式和重采样方式,键入波段数,点击OK即完成影像数据融合,如图1。

图1 影像数据融合对话框

2.2 应用PCI软件进行遥感影像正射校正

经过设置投影参数,数据格式转换,加入DEM,采集控制点,模型计算,重采样,完成对遥感影像的正射校正。

(1)工程设置

在PCI软件中建立一个包含所有工程数据的工程文件,设置校正影像的输出格式、输出分辨率、输出投影及坐标系统等,如图2。

图2 设置工程投影与控制点投影对话框

(2)控制点采集

控制点采集为人工采集,根据提供的GPS点位,在卫星影像上找到相应的同名点。这些控制点用以构成数学模型来对卫星影像进行纠正,并将影像归算到地面坐标系,如图3。

图3 控制点采集

(3)重采样生成正射影像

2.3 实验数据整理

表1 遥感影像图正射校正结果(单位:像素)

GCP X残差 Y残差 RMS

GCP 01 0.41 -0.74 0.80

GCP 02 0.64 0.67 0.11

GCP 03 0.02 -0.73 -0.71

GCP 04 0.96 0.37 0.89

GCP 05 0.70 -0.08 0.69

GCP 06 0.65 -0.64 0.08

GCP 07 0.62 -0.53 0.34

GCP 08 0.60 0.52 0.30

GCP 09 0.36 -0.01 -0.38

GCP 10 0.31 0.12 -0.28

GCP 11 0.28 0.09 -0.27

GCP 12 0.22 -0.16 0.14

根据上表计算总的控制点误差为:

所以X方向总误差为0.5427,Y方向总误差0.4944;RMS(均方根中误差)为0.7341,以上单位均为像素。

2.4、应用ERDAS软件进行遥感影像的裁剪

由于正射纠正后的图像不是规则的图形,因此要通过左上角和右下角两点的坐标,对此影像进行裁剪。

2.5、正射遥感影像图和AutoCAD图像的叠加

将在AutoCAD中生成的方格网与正射校正后的影像数据在ArcMap下进行叠加,由于两个数据的坐标是匹配的,所以可以叠加在一起,如图4。

图4 十字丝和影像叠加图

2.6、地图整饰

在Photoshop中将叠加后的影像数据进行整饰,使输出影像图更加美观,成果如图5。

图5 正射遥感影像成果图

3.结论

本文系统的阐述了正射遥感影像图的制作流程、原理与方法,其中包括全色影像与多光谱影像融合,高分辨率遥感影像正射校正,正射影像数据重采样以及图像整饰。并结合某地区遥感影像图的制作实例和实验结果,对本文所阐述的方法加以验证。随着航摄技术、卫星技术的进一步发展,数字正射影像的原始数据来源越来越广,分辨率越来越高,同时,随着计算机技术和纠正算法的进一步完善,数字正射影像图这一产品会愈发完善,将会得到更多用户的认可和使用。

参考文献:

[1] 刘国成,杨长保.遥感图像处理软件的设计与关键技术研究[J].吉林工程技术师范学院学报,2009.

[2] 韦玉春,汤国安.遥感数字图像处理教程 [M]. 北京: 科学出版社, 2007.12.

[3] 孙家.遥感原理与应用[M].武汉:武汉大学出版社,2009.6

作者简介:

纪洋(1983~),女,2010年毕业于辽宁工程技术大学地图制图学与地理信息工程专业,工学硕士,助教,研究方向为工程测量、地籍测量、地理信息系统。

上一篇:浅析城市居住区水景观规划设计 下一篇:火电厂主设备热工保护优化