植物抗病性生物工程技术论文

2019-02-16 版权声明 举报文章

1.TALEs分布

TALE只在β-和γ-变形细菌中被发现,大部分已知的TALE集中分布在植物病原细菌的黄单胞菌属Xantomonasspp.中,每个细菌中含有1至多个TALE不等(http://)。AvrBs3和AvrBs4两侧分布反向重复序列,推测它们是基因水平转移获得(Bonasetal.,1993)。另外,水稻白叶枯黄单胞菌(X.oryzaepv.oryzae,Xoo)中利用AvrBs3作为探针鉴定了一系列TALE的T3SEs,如avrXa5、avrXa和avrXa10(Hopkinsetal.,1992)。其它菌属中也发现了同源的TALE,如茄科雷尔氏菌R.solanacearum中也有TALE(RipTALs)的报道,Brg11较黄单胞菌属中的TAL有偏好的RVDS,激活寄主含有EBE(effector-bindingelement)的基因转录促进致病(deLangeetal.,2013;deLangeetal.,2014)。伯克霍尔德菌属(Burkholderiarhizoxinica)中同源效应物(bats)E5A-W45、E5AV36被报道含有T3S分泌信号,但是缺少可识别的NLSS和转录激活区,它们的重复区和黄单胞菌属中的TALEs有差异(Schornacketal.,2013;Bochetal.,2014)。黄单胞菌属(Xanthomonas)亦称黄单胞杆菌属,是由W.J.Dowson于1939年建立的模式病原细菌,代表种有:(1)十字花科黑腐病菌(X.campestrispv.campestris,Xcc),维管束寄生菌,引起十字花科植物的黑腐病(blackrot),叶缘叶脉变黑,相邻的叶肉组织枯死,呈黄褐色“V”型坏死;(2)水稻白叶枯黄单胞菌(X.oryzaepv.oryzae,Xoo),叶肉寄生菌,引起水稻白叶枯病(bacterialleafblight);(3)辣椒斑点致病变种(X.campestrispv.vesicatoria,Xcv),叶肉寄生菌,引起辣椒斑点病(bacterialspeckofpepper)。已报道的10大植物病原菌排行版上,黄单胞菌黑腐病致病变种占据3大席位(Mansfieldetal.,2012),分别为:(1)丁香假单胞菌(Pseudomonassyringaepathovars);(2)茄科罗尔斯通氏菌(Ralstoniasolanacearum);(3)根癌农杆菌(Agrobac-teriumtumefaciens);(4)黄单胞菌水稻白叶枯致病变种(Xanthomonasoryzaepv.oryzae);(5)黄单胞菌十字花科黑腐病致病变种(Xanthomonascampestrispathovars);(6)黄单胞菌地毯草致病变种(Xanthomonasaxonopodispathovars);(7)解淀粉欧文氏菌(Erwiniaamylovora);(8)苛养木杆菌(Xylellafastidiosa);(9)马铃薯黑胫病菌Dickeya(dadantiiandsolani);(10)果胶杆菌胡萝卜软腐病(Pectobacteriumcarotovorum)/黑胫病菌(Pecto-bacteriumatrosepticum)。

2.寄主抗性识别机制及TALE致病性

2.1寄主和病原菌相互作用

寄主和病原菌相互作用被认为是从PAMPs/M-AMPs(pathogenormicrobe-associatedmolecularpatt-erns)的识别开始的。病原菌的PAMPs/MAMPs相当保守,不同的PAMPs/MAMPs被定位在寄主细胞膜上的形态识别受体PRRs(patternrecognitionrecep-tors)特异性识别从而激活寄主的基础防御反应,这对植物免疫致病菌或非致病菌相当重要(JonesandDa-ngl,2006)。研究比较清楚的PAMPs包括微生物的鞭毛组分Flg22、Harpins、冷休克蛋白、脂多糖、肽聚糖和延伸因子Tu(EF-Tu)等(Kunzeetal.,2004;Nürnbe-rgeretal.,2004;Zipfeletal.,2004)。PAMPs被PRRs识别触发一个叫做PTI(PAMP-triggeredimmunity)的基础防御反应,该基础防御反应参与诱导MAPK信号通路、钙通量、产生一氧化氮和活性氧分子和激活WRKY转录因子(Nürnbergeretal.,2004;Heetal.,2006)。PTI介导的基础免疫有效地限制了绝大多数潜在的病原体的生长,是在大多数植物中广泛存在的基础防御反应(JonesandDangl,2006)。随着寄主PTI的加强,病原细菌相应地进化出了效应物激活的寄主感病性ETS(effector-triggeredsusceptibility),即利用T3SEs抑制寄主的PTI信号达到致病的目的(JonesandDangl,2006)。与病原细菌ETS(effector-triggeredsusceptibility)相对应地,寄主则又进化出了特异识别T3SEs的抗性(resistance)基因激活免疫反应,效应物激活的寄主免疫反应称为ETI(effector-triggeredimmunity)(JonesandDangl,2006)。效应物作用和修改寄主蛋白或效应物自身被寄主抗性R蛋白(resistanceprotein)识别即诱导ETI,ETI是植物的第二级防御策略,通过胼胝质沉积加厚细胞壁、阻断维管束的运输、抗病相关蛋白的表达、氧自由基的释放和细胞程序性死亡等。植物通过不断进化的R基因响应植物致病菌的挑战,提供了监测植物病原效应物的又一途径(Chisholmetal.,2006;MaandGuttman,2008)。由于R基因的存在,ETI改变相互作用的结果从感病回到抗病。总之,病原菌和寄主互作概括起来就是三种情况:(1)微生物引发植物的PTI,植物启动防御系统,激活抗病基因的表达,如转录调控因子WRKY表达激活下游抗病基因表达,微生物不能引起致病,植物表现为抗性寄主;(2)微生物引发植物的PTI,但是微生物利用Ⅲ型效应物抑制寄主的PTI引起致病,植物表现为感病寄主;(3)微生物引发植物的PTI,微生物利用Ⅲ型效应物抑制寄主的PTI,寄主进化出一系列的监守R基因抑制效应物的作用,植物表现为抗性寄主(Chisholmetal.,2006;MaandGuttman,2008)。

2.2植物富含LRR结构域蛋白

植物的抗性R蛋白因含有核酸结合区和富含亮氨酸重复区常归为NB-LRR(nucleotidebinding-leuc-inerichrepeat)蛋白家族。这些特别的免疫蛋白介导不同的抗性蛋白-效应物蛋白识别过程和激活寄主潜在的防御反应NB-LRRs呈现多功能域结构,每个功能域依据NB-LRR信号行使不同的功能。NB-LRR的功能和相关信号的复杂度是和植物-微生物互作相对应的(Elmoreetal.,2011)。亮氨酸重复区LRRs广泛存在于真核蛋白质中,参与蛋白-蛋白互作。一般情况下,LRR功能域包括20~29个氨基酸,其保守的11个残基片段序列为LxxLxLxxN/cxL(x代表任意一个氨基酸,L代表缬氨酸,异亮氨酸或苯丙氨酸)(KobeandKajava,2001)。如拟南芥PRRs鞭毛识别蛋白FLS2,延伸因子识别蛋白EFR,及水稻中的R蛋白Xa21都分别包含一个胞外28LRRs、21LRRs和23LRRs的结构域(Songetal.,1995;Gómez-GómezandBoller,2000;Zipfeletal.,2006)。LRR蛋白的保守的β折叠和邻近的松散区域是一个11个残基的片段,其序列为LxxLxLxxN/CxL,剩下的区域可能高度不同,目前的分子模型认为20个或30个残基长的LRR区域其核心的LxxLxL序列足以构成马蹄形结构的蛋白质。目前,包括LRRs的蛋白至少有7个不同亚族,在许多重要的生理过程提供了形成蛋白质相互作用的一个通用的结构框架(KobeandKajava,2001)。PRRs激活的寄主免疫反应在植物和微生物的互作中发挥了重要的作用。随着对PRRs研究的深入,值得一提的是,关于动物免疫相关的形态识别受体PRRs的发现赢得了2011年诺贝尔奖。许多植物抗性R蛋白及形态识别受体PRRs富含LRR(KobeandKajava,2001;Elmoreetal.,2011)。PRRs富含亮氨酸重复区LRRs(leucine-richrepeats)或细胞溶酶结构域(lysin-motif,LysM)。PRRs包含受体类激酶(re-ceptor-likekinases,RLKs)和受体类蛋白(receptor-likeproteins,RLPs),通常RLKs为跨膜蛋白,包含胞质外受体域LRRs和胞质内激酶域2部分,RLPs没有胞质内激酶域(Albrechtetal.,2012)。效应物的识别被认为是改变了NB-LRRs的构象,因而NB-LRR蛋白被释放激活下游的免疫反应的信号(TakkenandTameling,2009)。研究表明,一些核定位的NBS-LRRs的积累和激活对于植物免疫反应是必需的,如大麦(Barley)的CC-NB-LRRMLA10、拟南芥(Arabidopsis)的TIR(toll-interleukin1recep-tor)-NB-LRRs/RRS1-R、RPS4和SNC1蛋白的累积和激活都是免疫反应所必需的(Deslandesetal.,2003;Burch-Smithetal.,2007;Wirthmuelleretal.,2007;Chengetal.,2009)。

2.3TALE与R基因识别

在植物-病原菌互作过程中,存在基因-基因的识别现象,当植物中有抗性(Resistance,R)基因与病原菌无毒(Avirulence,Avr)基因相对应识别时,植物表现出非亲和互作的抗性;反之,植物-病原菌缺乏这种基因-基因识别时,寄主表现出感病症状。病原菌的致病性和无毒性取决于Avr蛋白的这种两性分子(bi-functionaleffector)的特征。许多报道表明,抗性寄主利用R基因监测TALE至少有3种策略(Schornacketal.,2013):(1)R基因编码蛋白作为诱饵陷阱直接与TALE结合,寄主产生过敏反应,如AvrBs3与Bs3之间的识别;(2)突变TALE靶基因需要的通用转录因子,阻止转录,如水稻中含有xa5隐性基因的抗性机制(Schornacketal.,2006);(3)突变TALE靶基因的启动子区阻止TALE的结合;(4)监控TALE基因启动子区模仿TALE靶基因的EBE序列,激活监控基因,启动植物抗性。植物监控病原菌的效应物主要通过富含核苷酸结合位点的亮氨酸重复区(NBS-LRR)的蛋白来识别。然而对于TALE的识别机制较少,目前仅有关于番茄中的富含NBS-LRR的Bs4蛋白是通过该机制来识别AvrBs4。由于Bs4蛋白N端含有TIR结构域,还能识别Hax3和Hax4这类的TALE(Kayetal.,2005)。Bs4蛋白识别的具体机制还不清楚,但有研究发现,在植物体内过量表达AvrBs3也能激发Bs4蛋白依赖的过敏反应(Schornacketal.,2005)。另一个识别TALE的例子是水稻抗白叶枯病菌Xoo基因xa13,xa13编码一个蔗糖转运家族蛋白(SWEET),其抗性表现在启动子区一个小区域的多态性,导致TALEPthXo1不能与其启动子区结合,进而影响水稻白叶枯病菌Xoo生长所需碳源(Chenetal.,2010)和铜的再分配(Yuanetal.,2010)。水稻Xa27编码113个氨基酸的蛋白,启动子区有TALE结合位点,赋予水稻对具有AvrXa27水稻白叶枯病菌Xoo及非维管束致病菌水稻细菌性条斑病菌Xanthomonasoryzaepv.oryzicola(Xoc)的抗性(Hummeletal.,2012)。最近有报道称,Xoc中的TALEsTAL6和TAL11a可抑制水稻R基因Xa7对Xoo中TALEAvrXa7的识别,这是首次关于TALEs可作为植物防御反应的抑制子,而缺失C端则无抑制作用,表明TAL6和TAL11a的转录激活寄主基因需要抑制作用(Jietal.,2014)。另一个TALE靶标是植物转录因子。在Xcv85-10感染辣椒后研究依赖AvrBs3的转录谱时发现超过20个靶基因,命名为UPA(upregulatedbyAvrBs3)。upa20其编码产物是一个bHLH(basichelix-loop-he-lix)家族的转录激活子,该转录激活子是AvrBs3诱导的植物细胞过度生长的关键调控蛋白。AvrBs3导致叶肉细胞的肥大,在感染后期阶段也可能会支持细菌释放到植物表面(Maroisetal.,2002;Kayetal.,2007)。在柑橘溃疡病X.citri中也有类似报道,溃疡是由几个各异的XcTALEs诱导转录因子CsLOB1形成(Huetal.,2014)。Xoc中首次发现TALETal2g诱导寄主水稻中一个硫酸盐转运子(Cernadasetal.,2014),硫酸盐是否限制Xoc的生长或是其它机制仍不清楚。该研究还指出,Tal2g诱导多个寄主基因表达,但是对病原菌致病关键的基因只有1个直接的S基因,其它被诱导的基因可能是附带的效应(Cer-nadasetal.,2014)。有趣的是,Xoo和Xoc中的TALEs寄主靶标没有重合的,Xoo中多个TALEs靶标都是SWEET家族基因,而Xoc中26个TALEs没有一个靶标是SWEET家族基因(Cernadasetal.,2014)。

3.TAL在植物抗病上的生物工程应用

鉴于以上的植物识别TALEs的机制,及TALE的生物学特性,科学家们开始设计新的植物抗性策略,从各方面击破病原菌的攻击,赋予植物新的抗性。TALE通过启动子模块识别激活R或者S基因,启动下游基因,引起非寄主过敏反应或促进病原菌致病。启动子的模块易于被基因工程所利用,目的在于使植物获得新的抗性。

3.1改造抗性R基因监控

TALEs富含亮氨酸重复区的抗性蛋白Bs4能识别多个TALEs,可以通过特异性高表达Bs4等抗性基因,增强植物的抗性。另外,研究表明体外突变抗性基因Rx的LRR区,会增强植物对效应物的识别特异性(FarnhamandBaulcombe,2006)。利用这一特性,基因工程改造Bs4基因LRR区可能增强其识别TALE的特异性和亲和力。

3.2突变易感S基因的启动子区

TALEs通过RVDs识别特定的植物靶基因启动子区,水稻抗性基因xa13,其对水稻白叶枯病菌Xoo的抗性表现在启动子区一个小区域的多态性,导致Xoo中TALEPthXo1不能与xa13启动子区结合,进而影响Xoo生长所需碳源(Chenetal.,2010)。利用基因工程将不敏感的基因xa13启动子区整合至易感S基因启动子区,使植物获得新抗性。这一方法在易感S基因Os11N3基因上应用成功,获得了水稻白叶枯病菌Xoo的抗性。另一个例子是,增加一个易感S基因的等位基因,这个等位基因的启动子区对于TALEs不敏感(Lietal.,2012)。这一方法需注意:植物中的靶基因无其它未知功能且没有冗余的拷贝;启动子区的改变不能影响看家基因的功能;该靶基因对病原菌的致病性至关重要,最好能抗多个TALEs(Schornacketal.,2013)。S基因的激活对于促进病原菌的致病至关重要,突变S基因的启动子区是对大多数的TALEs比较有效的方法。

3.3增加抗性基因启动子区

EBEs陷阱利用抗性基因xa27和Bs3的启动子区陷阱,即用生用工程的方法体外合成一个或者多个TALEs结合的EBEs位点至监控基因的启动子区,使得转基因植物在病原菌感染过程中注入TALEs时,迅速识别启动抗性反应。这一方法成功的例子是在Bs3基因上,通过在启动子区增加2个EBEs位点,一个是辣椒斑点病致病变种X.euvesicatoria中TALEAvrBs3Δrep16的RVDs部分突变识别区EBEs位点,另一个是水稻白叶枯病菌Xoo中的TALEAvrX-a27的EBEs位点。结果表明,融合启动子区的Bs3表达构建在烟草Nicotianabenthamiana上瞬时表达能够增强寄主的识别能力(R觟meretal.,2009)。还有在启动子区增加6个EBEs的成功报道,通过在Xa27基因上分别增加3个水稻白叶枯病菌Xoo和3个水稻细条病致病变种X.oryzicola中的TALEs的EBEs,转基因植株具有这2种病原细菌的抗性(Hummeletal.,2012)。

3.4筛选新的监控基因

与已知的NBS-LRR抗性基因对比,在不同植物中存在上千个这样的抗性监控基因(Lietal.,2010)。利用深度测序RNA-Seq从辣椒Capsicumpubescens中鉴定并克隆TALEs激活的Bs4C的方法为鉴定更多新的监控基因提供了基础。对于某些情况下,需要减慢或加速过敏反应,可以从调整监控基因的数量或者类型方面进行生物工程改造(Strau覻etal.,2012;Schornacketal.,2013)。目前,有4个R基因被克隆:辣椒CapsicumannuumBs3(R觟meretal.,2007),辣椒C.pubescensBs4C(Strau覻etal.,2012),水稻OryzasativaXa10(Tianetal.,2014)和Xa27(Guetal.,2005)。筛选和克隆更多的植物NBS-LRR抗性基因,可以为生物工程改造提供更多的抗性资源。3.5生物工程改造获得新抗性利用TALEs识别位点和限制性内切酶融合表达,定点改造基因组,将会是成本低廉、特异性识别更强的手段(Schornacketal.,2013)。植物的利用富含NBS-LRR的抗性R基因监控病原菌的效应物,监控的有效应性依赖于效应物的保守性,对于病原菌越重要的效应物,R基因的识别越容易因该效应物的突变或丢失而失效,开发更多R基因对于增强和持续的识别是关键。许多植物病毒是DNA单链病毒,极少数是双链的。而单链病毒在复制增殖过程中形成DNA双链,利用TALEs特异的DNA双链识别特性,体外合成特异识别的模块,可用来防治植物病毒病。植物-病原菌互作是一个持续的进化过程,当病原菌一方通过消除或改变特定的效应物进化避开寄主的监控,意味着寄主的R基因系统被打败。寄主通过R基因互补的改变等才能恢复其抗性。如马铃薯NBS-LRRR3a介导识别致病疫霉菌Phytophthorainfestans的AVR3a效应物,AVR3a通过变异逃过R3a的识别(Vleeshouwersetal.,2011),而R3a被Se-gretin&Kamoun发现通过单个氨基酸的变异重新恢复识别变异的AVR3a(Schornacketal.,2013)。利用点突变的R基因获得高抗性的寄主植物。

4.结论

TALEs通过特别机制参与病原菌与寄主的互作,根据已知的分子机制,可以很好地控制TALE依赖的致病性,开发TALE激发的抗性,利用TALE融合蛋白有目的消除或限制病原菌的感染。TALE在基因工程和合成生物方面已被证实为非常有用的工具,成为植物病理这一领域最重要的发现。而TALE在生物工程抗性方面的成功应用包括植物,动物及人类细胞,期待它的更多应用的开发。

作者:蒋国凤 单位:广西大学林学院

0

好文章需要你的鼓励

上一篇:广电工程技术发展对策 下一篇:高职数控技术专业教学改革

写作没思路?你需要文秘服务

2~15天完成、写作疑难迎刃而解

了解详情
期刊投稿服务,轻松见刊

个性化定制期刊投稿方案,1~3月见刊

了解详情

被举报文档标题:植物抗病性生物工程技术论文

被举报文档地址:

https://wenmi.com/article/pmzbmy054nyq.html
我确定以上信息无误

举报类型:

非法(文档涉及政治、宗教、色情或其他违反国家法律法规的内容)

侵权

其他

举报理由:
   (必填)

发表评论  快捷匿名评论,或 登录 后评论
评论
学术顾问

免费咨询 发表服务 期刊推荐 文秘服务 客服电话 免费咨询电话400-888-7501