智能PID控制综述

时间:2022-02-13 01:03:56

智能PID控制综述

摘 要:在复杂工业控制系统中应用传统PID控制存在一定的局限性,在这种情况下,科技人员以传统PID控制为核心,应用智能控制技术,研制了智能PID控制器,从而有效改善传统PID控制器的特性,提高系统的控制效果。本文主要介绍了专家PID控制、模糊PID控制、神经网络PID控制和智能PID自学习控制等目前常见的几种智能PID控制器。

关键词:数字PID;超调控制

中图分类号:TP273 文献标识码:A 文章编号:1674-7712 (2013) 24-0000-01

PID控制因其具有结构简单、稳定性好、可靠性高等优点,而被广泛应用在工业控制领域。但是,现代的工业控制过程中,许多被控对象机理复杂,具有严重的非线性、时变不确定性和纯滞后性,采用传统PID控制不能达到理想的控制效果,这种情况下,智能PID控制应运而生。

一、传统PID控制

(一)控制原理

PID控制规律是比例(P)、积分(I)和微分(D)控制,根据系统的产生误差,利用比例(P)、积分(I)和微分(D)算法,计算出控制调节量进行控制的。

(二)PID控制的特点

1.比例(P)控制

比例(P)控制是最基本、也是最简单的控制方式,控制器的输出信号成比例反映输入信号。只要系统有误差,控制器就会起控制作用,减小系统的稳态误差。比例系数KP决定比例控制的强弱,增大KP能提高系统开环增益,提高系统的控制精度,但是KP过大,又会降低系统的相对稳定性,甚至导致闭环系统不稳定。

2.积分(I)控制

积分(I)控制的输出与输入误差的积分成正比关系。对于有差系统,要消除稳态误差,就必须在控制器中加入积分项,积分项随着时间的增加而加大,使系统的稳态误差进一步减小,直到为0,消除稳态误差。通常,积分(I)控制的主要作用使系统没有稳态误差,但是积分作用会产生相位滞后,因此如果积分作用太强,会使被控系统的稳定性变差。

3.微分(D)控制

微分(D)控制的输出与输入误差的微分成正比关系。微分(D)控制能够反映误差的变化率,只要系统有误差,而且误差随时间变化时,控制器对误差进行微分,提前抑制误差,避免被控系统产生过大的超调量。但是对于无变化或是变化缓慢的控制对象,微分(D)控制不起作用。

由于比例(P)控制、积分(I)控制和微分(D)控制都有优缺点,因此,在工业控制系统中,多采用组合控制―PI、PD或是PID控制。控制器根据被控对象的特性,调整PID的三个参数,使系统达到满意的控制效果。

(三)控制算法介绍

计算机PID控制系统中使用数字PID控制器。目前经常使用的有位置式PID控制算法、增量式PID控制算法。(1)位置式PID控制算法。该算法的优点是原理简单、使用方便;不足是对e(k)的累加增大了计算机的存储量和运算的工作量;u(k)的直接输出易造成执行机构的大幅度变化。(2)增量式PID控制算法。该算法的优点是:只计算增量,计算精度对控制量的影响较小;不对偏差累加,不易引起积分饱和;得出的是控制量的增量,误动作影响小;易于实现手动到自动的无冲击切换。缺点是有静态误差、积分截断效应大、溢出影响大。

二、智能PID控制

传统PID控制算法简单,调整参数方便,且具有一定的控制精度,所以在生产实际中,有95%以上的工业控制使用PID控制。但是,随着工业控制系统的越来越复杂,传统PID控制器的弊端也越来越明显。比如,传统PID控制只有用在时不变系统时,才能达到满意的效果;对于非线性或是不确定性系统,则可能致使系统性能变差甚至造成系统的不稳定。因此,工程技术人员在使用传统PID控制的同时,也对其进行了多种改进,其中,智能PID控制器就是众多控制系统中较为典型的新一代控制器。

智能PID控制是以传统PID控制为核心,应用智能控制技术研发的新型控制器。具备两者的优点,既具有传统PID控制器结构简单、可靠性高和整定方便的特点,又具备智能控制系统自学习、自适应、自组织的功能,能够在线调增PID控制器的三个参数,以适应过程参数变化。

智能PID控制根据智能技术的类别主要分为三类:专家PID控制、模糊PID控制、神经网络PID控制。下面主要介绍一下几种智能PID控制器的特点。

(一)专家PID控制

专家PID控制的实质是通过人工智能技术组织和利用被控对象和传统PID控制规律的专家知识,求得被控系统尽可能的实用化和优化。专家PID控制采用传统PID控制形式,根据专家知识和经验,在线调整PID三个参数,使响应曲线达到某种最佳响应曲线。专家PID控制具有良好的控制特性,能应付控制过程中出现的不确定性。但是,专家PID控制,进行实时自适应控制的依据是专家知识或是大量经验。因此,获取专家知识和总结实验经验尤为重要,是设计控制器的重点也是难点。

(二)模糊PID控制

模糊PID控制器优点是不需要被控对象的数学模型,而是依据现有的控制系统知识,运用模糊控制方法建立控制决策表,由该表决定控制量的大小。模糊PID控制既具备模糊控制灵活和适应性强的特点,又具备传统PID控制器结构简单、精度高的优点。模糊PID控制系统的控制效果在于如何建立模糊控制器规则和确保模糊关系的真实性,但是建立模糊规则通常带有主观性,这就一定会影响到系统的动态特性,因此,一些学者在模糊控制器设计中增加自学习的功能,使系统能够自我完善。

(三)神经网络PID控制

基于神经网络的PID控制与模糊PID控制和专家PID控制不同,是直接利用神经网络作为控制器。神经网络作为在线估计器,控制信号由常规控制器发出。首先,神经网络通过学习算法进行离线学习,然后介入控制系统,间接地调整PID参数,给出最佳控制规律下的PID控制器的参数,同时,继续自学习,根据受控对象不断变化调整神经网络的权系数,获得最理想的控制效果。

不论是何种智能控制PID控制方式都是基于传统PID控制基本原理,将智能控制技术与传统PID控制结合,直接或间接地动态整定PID参数,使控制达到更优的效果。

三、结束语

智能控制理论研究的深入,必将带动智能PID控制器的研发,从而完善PID控制性能,提高控制效果。

参考文献:

[1]石辛民,郝整清.模糊控制及其Matlab仿真[M].北京:清华大学出版社,2008.

[2]易继锴,侯媛彬.智能控制技术[M].北京:北京工业大学出版社,2005.

[3]张化光,何希勤.模糊自适应控制理论及其应用[M].北京;机械工业出版社,2005.

上一篇:用电监察工作中的安全用电问题与改进措施分析 下一篇:浅析10kV电力电缆故障的起因