浅谈光伏发电技术在建筑上的应用

时间:2022-01-22 02:07:05

浅谈光伏发电技术在建筑上的应用

摘 要:太阳能作为清洁、可再生能源,光伏发电技术成功应用到建筑上受到业内广泛关注,本文就光伏建筑一体化(BIPV)技术应用情况及系统设计做了简要论述,以此抛砖引玉,与大家进行探讨、学习,使BIPV技术得以更好地推广与应用。

关键词:光伏建筑一体化、BIPV

中图分类号:TB857文献标识码: A

一、光伏发电

1、光伏发电简介

1839年,法国科学家贝克雷尔(Becqurel)发现,阳光照在半导体材料上会产生电位差,这个物理现象后来被称为“光伏效应”,由此诞生了可应用的光伏发电。在世界能源日趋紧张的状况下,太阳能作为清洁、可再生能源,光伏发电应用被电能专家密切关注,再加上政府的扶持,光伏工业得以飞速发展。光伏发电作为一种新能源开发的技术应用, 对环境保护、经济发展发挥着巨大作用。

2、光伏发电的技术特点

光伏发电具有安全可靠、无噪声、无污染、无需燃料、故障率低、维护简便、可无人值守、建设周期短、工程规模大小随意等许多优点,是常规发电方式所不能比拟的。该技术已经在不少领域的设备供电上得到成功应用,但由于其发电量较小、光电转化率低、建设成本高、受气候条件制约等缺点又制约了该技术普遍应用。

3、光伏发电产业发展状况

欧洲光伏工业协会(EPIA )预测,到2040年,光伏发电将占总电力的20%以上,到本世纪末将占到60%以上。我国光伏发电产业从地区分布来看,主要集中在浙江和江苏地区,装机容量分别达到66.3和62.4兆瓦,全国光伏发电应用占比分别为37.6%和35.4%。从应用形式来看,主要是光伏发电与建筑集成的形式,总装机容量达到162.7兆瓦,在该地区光伏发电应中占比为92.3%。在国际市场拉动和国内政策的扶持下,我国的光伏产业链已基本形成。

从近期看,光伏发电可以作为常规能源的补充,可以解决小规模系统设备用电,而小型的光伏发电系统集成于建筑物中,直接为建筑内的负荷供电,将是这种常规能源补充的一种有效应用形式,是未来光伏产业推广与应用的一大发展方向。

二、光伏建筑一体化应用

1、光伏发电技术在建筑上应用

光伏发电在建筑上的应用,不仅缩短了输电线路环节, 同时减少了土地占用,具有明显的社会效益与经济效益。业内对光伏发电与建筑一体化应用称为BIPV (Building Integrated Photovoltaics)。由于太阳能光伏方阵所产生的是直流电,且随着太阳光强度的太小而变化,为了得到稳定、可靠的交流电,采用逆变器、滤波器及控制装置形成稳定可控的交流电源,除向负荷供电外,还可将多余的电能向电网反馈,系统应用示意图如下:

2、光伏方阵与建筑的集成方式

光伏方阵与建筑物的集成方式有两种:一种是将封装好的晶硅型电池组件置于建筑屋顶组成光伏方阵(见下图左);另外一种是将非晶硅型光伏方阵与建筑的集成化(见下图右),即将光伏电池制作成玻璃幕墙、防水卷材等形式,既是光伏发电的电池组件,又是建筑的幕墙、防水材料,集发电与装饰为一体,是今后的光伏建筑一体化发展的主要趋势。当然,将以上两种方式综合利用也是可行的,光伏发电系统其余的备安装于建筑内。

三、BIPV应用系统设计

(一)设计前分析

1、气象统计、分析

光伏发电系统若要成功应用到建筑上,先决条件是该建筑物所在地要有充裕的阳光,这就需要对该建筑所在地的气象进行统计、分析,计算该建筑所在地区的年日照时间,同时分析其经济性,得出该建筑是否有必要应用光伏发电系统。

2、安全性分析

光伏发电系统是以建筑作为载体,是依附于建筑物的,光伏发电系统与建筑集成化应用的安全性涉及以下三方面:

(1)光伏组件本身的结构强度是否能承受恶劣气候(飓风、雷电、冰雹、大雪等)的冲击,在恶劣气候条件下是否能正常工作,这些因数必须考虑,在选型时要求光伏组件厂家出具相关测试报告,必要时还要再进行试验,符合要求后才能在工程上应用;

(2)光伏组件及相关设备安装在建筑上后,对建筑结构、消防是否有影响,应进行评估;

(3)光伏发电系统对建筑物内的人员安全、其它设备正常运行是否有影响也应进行评估。

3、环境分析

光伏发电系统应用到建筑物上,环境影响分析主要从建筑内、外两方面进行,应对光伏组件及相关设备装置对环境是否造成污染进行评估。

4、经济分析

BIPV的成本最主要是受光伏组件价格影响,按照前2年的市场价格,单(多)晶硅电池组件的价格一般在30~35元/W范围内,非晶电池的峰瓦价格在23~28元/W范围内。再加上逆变器、蓄电池、控制器、仪表、输电线路等其它费用,单(多)晶硅电池组件发电成本大约在50~70元/W范围内,非晶硅电池组件40~60元/W。随着光伏发电系统技术的不断革新,其系统成本也将随之降低,可以粗略估计,到2020年,光伏系统的成本将降低1/3,其成本降低走势如下图:

此外,阳光日照时效也是影响BIPV供电成本的主要原因之一,以我国I类光照的西北地区为例,以年峰值日照时数2200小时为例,单晶硅光伏发电系统每峰瓦成本按32元计算,每千瓦时供电成本约1.4元;非晶硅光伏发电系统每峰瓦成本按26元计算,其供电成本约1.25元;对于一些要求比较高的光伏发电系统,每峰瓦成本在60元左右,其单位供电成本在3.7元左右。

光伏供电成本还与系统的电能损耗、工程建设费用有关,这些因素综合决定了BIPV供电成本的高低。

5、与建筑整体协调分析

光伏发电系统应用到建筑后,作为建筑的一部分,需与该建筑的装饰效果协调一致。如光伏组件的比例尺度、颜色应与建筑整体风格相吻合,与建筑的其他部分相协调统一。

6、工程实施分析

光伏发电系统和建筑是两个不同使用功能的系统,若将这两个系统有效结合,在建筑的设计方案、初步设计、施工图设计、施工组织设计中进行详尽分析。

(三)BIPV设计

1、建筑方案设计

对于应用光伏发电的建筑物,在设计过程中要合理确定光伏系统各组成部分在建筑中的位置,并满足其所在部位的建筑防水、排水等功能要求,同时便于系统的维护和更新。建筑物的体型及空间组合设计应为光伏组件接收更多的太阳光创造条件,光伏组件的安装部位应

避免受景观环境或建筑自身的遮挡,并宜满足光伏组件冬至日全天有3h以上建筑日照时数的要求。

在新建建筑上安装光伏系统,建筑结构设计时应事先考虑受光伏方阵及相关设备传递的荷载效应;在既有建筑上增设光伏系统必须进行结构验算,保证结构本身的安全性。

2、BIPV光伏系统设计

根据BIPV系统应用原理,在系统设计中,配套设备、部件的型号根据工程需要进行选择。

(1)方阵设计

光伏方阵在设计时,应考虑到建筑排水问题,不应造成局部积水、防水层破坏、渗漏等情况。还应考虑光伏方阵应采取必要的通风降温措施,以抑制其表面温度升高。一般情况下,置于屋顶的光伏组件与安装屋面之间设置50mm以上的空隙,组件之间也留有空隙,会有效控制组件背面的温度升高。光伏组件不得跨越主体结构的变形缝,应采用与主体建筑的变形缝相适应的构造措施。

在光伏方阵与建筑集成应用时,这对于本身不透光的晶体硅太阳电池而言,调整电池片之间的间隙来调整建筑的透光量,如光电幕墙和光电采光顶。同时要考虑与建筑整体效果相匹配,如颜色、尺寸大小等。光伏组件选择时应注意,目前市场上大部分的光伏组件规格相对比较单一,要适应建筑多样化的要求,需要进行专门的设计与生产。

(2)光伏组件选择

目前可供选择的光伏组件有单晶硅、多晶硅、薄膜电池等,其优劣性如下,设计者可根据工程需要进行选型。

1)单晶硅电池的光电转换效率约为15%左右,最高达到24%,这是目前所有种类的太阳能电池中光电转换效率最高的,且坚固耐用,使用寿命一般可达15年,但成本很高,未广泛使用。

2)多晶硅电池的光电转换效率约12%左右,使用寿命也要比单晶硅太阳能电池短,但成本比单晶硅电池要底,现在工程应用较多。

3)薄膜式太阳电池的光电转换效率约为10%左右,主要优点是在弱光条件也能发挥光电转换作用,硅材料消耗很少,电耗更低,工艺过程大大简化。但其缺点是光电转换效率偏低,且不够稳定,随着使用时间延长,其转换效率会衰减。 现工程上应用还未普遍,不过随着技术的革新,这种高性价比的电池材料在将来会大显身手。

(3)光伏方阵的结构设计

光伏方阵与建筑主体结构的连接和锚固必须牢固可靠,设计时必须经过验算来保证连接的可靠性及安全性。建筑的设计寿命一般在50年左右,而光伏组件的使用寿命大概只有20年左右,方阵与建筑结合时,根据光伏组件的连接方式,充分考虑在使用期内的多种最不利情况。进行结构强度验算时,不但要校核安装部位结构的强度和变形,而且需要计算支架、支撑金属件及各个连接节点的承载能力。

(4)光伏汇流箱设计

在较大规模的BIPV系统,为了光伏组件串与逆变器之间接线少、方便维护、提高安全性,需要在光伏组件与逆变器之间增设光伏汇流箱,小规模的BIPV系统可不设光伏汇流箱。光伏汇流箱将若干个光伏组件串进行并联接入(汇流),再通过防雷器与断路器后输出,接入到逆变器。光伏汇流箱技术要求如下:

1)工作温度范围:-25℃ --65℃,环境湿度:95%;

2)可以满足室外安装要求,防水等级要求为IP65及以上;

3)箱内要求有与光伏组件串数量相等的正、负极防反二极管,对接入的光伏组件串有防反功能;

4)配有光伏专用防雷器,汇流的正、负极都具备防雷功能;

5)具有智能监控装置,是对光伏组件串的电压、电流进行监控。

(5)逆变器选择

由于光伏组件输出的是直流电,而我国建筑中很多负载需要交流220V电源。不管是独立式BIPV系统,还是并网式BIPV系统,都需要逆变器将直流电转换成交流电,BIPV系统对逆变器的技术要求如下:

1)输出的电压、频率稳定,且在一定范围内可以调,电压波形中谐波成分尽量小;

2)具有125%-150%的电压过载能力,有短路、过载、过热、过电压、欠电压等保护功能和报警功能,自动开关及断路保护;

3)工作环境温度范围:-15℃ --55℃,湿度:85%;

4)转换流损失小,逆变效率高,逆变率一般应在85%以上;

5)快速动态响应、启动平稳,启动电流小,运行稳定可靠;

6)最大功率点跟踪(MPPT)控制,自动电压调整,防止单独运行;

7)输入的直流电压、电流及输出的交流电压、电流显示。

(6)控制器选择

这里所说的控制器是指对光伏发电系统的直流充电、交流逆变进行控制的设备,控制器应具有以下功能:

1)逆变器、蓄电池故障报警及保护;

2)蓄电池最优充电、放电显示、控制;

3)具有输入高压(HVD)断开和恢复连接的功能,输出欠压(LVG)发出声光告警信号;

4)具有负载短路保护、充电短路保护、蓄电池极性反接保护、雷击保护;

5)工作环境温度范围为-15℃ --55℃,空气湿度不得超过90%;

6)继电器输入输出开关以或MOSFET模块。

(7)控制器选择

目前太阳能光伏发电系统中最大的能量损失在于蓄电池。虽然现在市面上蓄电池琳琅满目,但很多不适合用于BIPV系统,目前较适合BIPV系统的蓄电池有铅酸蓄电池,铅酸蓄电池具有性能稳定、寿命长、容量大、价格低等优点。光伏蓄电池的几个主要技术指标要求如下:

1)电压:每单体蓄电池标称电压为12v,实际电压随充放电的情况而变化;终止电压一般不能低于1.8v;

2)容量:处于完全充电状态的单体铅酸蓄电池的电池容量不得低于100Ah;

3)放电时间:放电时间视放电电流的大小而定,正常情况下为10小时;

4)使用寿命:在-15℃-40℃使用环境下,正常使用,铅酸蓄电池浮充寿命一般要求在10年以上;

5)内阻:电池的内阻不是常数,在充放电过程中随时间不断地变化,内阻愈小的电池性能愈好。

(8)其它设备选择

光伏发电系统除了上述装置外,还需变压器、配电箱柜等设备,这些设备可根据相关规范进行选型与设计。

四、结束语

BIPV系统现还处于初步应用阶段,这是由于光伏组件的光电转化率还比较低,该技术的瓶颈未得以突破,但其具有无可比拟的优越性被广乏看好,在电力领域有着巨大的发展潜力。在光伏产业技术革新的过程中,若要加速其发展速度,除了企业自主创新外,还跟各级政府的政策优惠和财政支持、配套措施辅助密不可分,相信在不久的将来,光伏技术必将在我们的生活和工业生产中发挥着重要的作用。

参考文献:

[1] 《2011-2012年中国光伏产业发展研究年度报告》中国可再生能源发展项目办公室主编2012.3

[2]《太阳能光伏建筑一体化工程设计与案例》李现辉、郝斌主编著2012.3

[3]《光伏建筑一体化工程》中国建筑工业出版社杨洪兴周伟 编著2009.1

[4] 《太阳能光伏发电系统的设计与施工(原书第4版)》 太阳光发电协会主编著, 宁亚东 (译者)

[5] 《民用建筑太阳能光伏系统应用技术规范》JGJ 203―2010 住房和城乡建设部2010.3

上一篇:市政建设给排水\污水管网工程施工质量和安全管... 下一篇:浅谈定容下料器的发展与探讨